Distilling interpretable causal trees from causal forests
- URL: http://arxiv.org/abs/2408.01023v1
- Date: Fri, 2 Aug 2024 05:48:15 GMT
- Title: Distilling interpretable causal trees from causal forests
- Authors: Patrick Rehill,
- Abstract summary: A high-dimensional distribution of conditional average treatment effects may give accurate, individual-level estimates.
This paper proposes the Distilled Causal Tree, a method for distilling a single, interpretable causal tree from a causal forest.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning methods for estimating treatment effect heterogeneity promise greater flexibility than existing methods that test a few pre-specified hypotheses. However, one problem these methods can have is that it can be challenging to extract insights from complicated machine learning models. A high-dimensional distribution of conditional average treatment effects may give accurate, individual-level estimates, but it can be hard to understand the underlying patterns; hard to know what the implications of the analysis are. This paper proposes the Distilled Causal Tree, a method for distilling a single, interpretable causal tree from a causal forest. This compares well to existing methods of extracting a single tree, particularly in noisy data or high-dimensional data where there are many correlated features. Here it even outperforms the base causal forest in most simulations. Its estimates are doubly robust and asymptotically normal just as those of the causal forest are.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles.
We show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled.
arXiv Detail & Related papers (2024-02-02T15:36:43Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - Decision trees compensate for model misspecification [29.436464740855598]
We present 5 alternative hypotheses about the role of tree depth in performance in the absence of true interactions.
Part of the success of tree models is due to their robustness to various forms of mis-specification.
We present two methods for robust generalized linear models addressing the composite and mixed response scenarios.
arXiv Detail & Related papers (2023-02-08T14:32:58Z) - Active learning of causal probability trees [0.0]
We present a method for learning probability trees from a combination of interventional and observational data.
The method quantifies the expected information gain from an intervention, and selects the interventions with the largest gain.
arXiv Detail & Related papers (2022-05-17T08:56:34Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
Oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) are more ambiguously determined from the data.
Existing inference methods tend to yield very noisy and underestimated OEF maps, while overestimating DBV.
This work describes a novel probabilistic machine learning approach that can infer plausible distributions of OEF and DBV.
arXiv Detail & Related papers (2022-03-11T10:47:16Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Trading Complexity for Sparsity in Random Forest Explanations [20.87501058448681]
We introduce majoritary reasons which are prime implicants of a strict majority of decision trees.
Experiments conducted on various datasets reveal the existence of a trade-off between runtime complexity and sparsity.
arXiv Detail & Related papers (2021-08-11T15:19:46Z) - Achieving Reliable Causal Inference with Data-Mined Variables: A Random
Forest Approach to the Measurement Error Problem [1.5749416770494704]
A common empirical strategy involves the application of predictive modeling techniques to'mine' variables of interest from available data.
Recent work highlights that, because the predictions from machine learning models are inevitably imperfect, econometric analyses based on the predicted variables are likely to suffer from bias due to measurement error.
We propose a novel approach to mitigate these biases, leveraging the ensemble learning technique known as the random forest.
arXiv Detail & Related papers (2020-12-19T21:48:23Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.