Universality of kernel random matrices and kernel regression in the quadratic regime
- URL: http://arxiv.org/abs/2408.01062v1
- Date: Fri, 2 Aug 2024 07:29:49 GMT
- Title: Universality of kernel random matrices and kernel regression in the quadratic regime
- Authors: Parthe Pandit, Zhichao Wang, Yizhe Zhu,
- Abstract summary: In this work, we extend the study of kernel kernel regression to the quadratic regime.
We establish an operator norm approximation bound for the difference between the original kernel random matrix and a quadratic kernel random matrix.
We characterize the precise training and generalization errors for KRR in the quadratic regime when $n/d2$ converges to a nonzero constant.
- Score: 18.51014786894174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kernel ridge regression (KRR) is a popular class of machine learning models that has become an important tool for understanding deep learning. Much of the focus has been on studying the proportional asymptotic regime, $n \asymp d$, where $n$ is the number of training samples and $d$ is the dimension of the dataset. In this regime, under certain conditions on the data distribution, the kernel random matrix involved in KRR exhibits behavior akin to that of a linear kernel. In this work, we extend the study of kernel regression to the quadratic asymptotic regime, where $n \asymp d^2$. In this regime, we demonstrate that a broad class of inner-product kernels exhibit behavior similar to a quadratic kernel. Specifically, we establish an operator norm approximation bound for the difference between the original kernel random matrix and a quadratic kernel random matrix with additional correction terms compared to the Taylor expansion of the kernel functions. The approximation works for general data distributions under a Gaussian-moment-matching assumption with a covariance structure. This new approximation is utilized to obtain a limiting spectral distribution of the original kernel matrix and characterize the precise asymptotic training and generalization errors for KRR in the quadratic regime when $n/d^2$ converges to a non-zero constant. The generalization errors are obtained for both deterministic and random teacher models. Our proof techniques combine moment methods, Wick's formula, orthogonal polynomials, and resolvent analysis of random matrices with correlated entries.
Related papers
- Highly Adaptive Ridge [84.38107748875144]
We propose a regression method that achieves a $n-2/3$ dimension-free L2 convergence rate in the class of right-continuous functions with square-integrable sectional derivatives.
Har is exactly kernel ridge regression with a specific data-adaptive kernel based on a saturated zero-order tensor-product spline basis expansion.
We demonstrate empirical performance better than state-of-the-art algorithms for small datasets in particular.
arXiv Detail & Related papers (2024-10-03T17:06:06Z) - A non-asymptotic theory of Kernel Ridge Regression: deterministic equivalents, test error, and GCV estimator [7.163829696591103]
We consider learning an unknown target function $f_*$ using kernel ridge regression.
We establish a non-asymptotic deterministic approximation for the test error of KRR.
arXiv Detail & Related papers (2024-03-13T20:12:03Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
We introduce algorithms to select/design kernels in Gaussian process regression/kriging surrogate modeling techniques.
A first class of algorithms is kernel flow, which was introduced in a context of classification in machine learning.
A second class of algorithms is called spectral kernel ridge regression, and aims at selecting a "best" kernel such that the norm of the function to be approximated is minimal.
arXiv Detail & Related papers (2022-06-03T07:50:54Z) - An Equivalence Principle for the Spectrum of Random Inner-Product Kernel
Matrices with Polynomial Scalings [21.727073594338297]
This study is motivated by applications in machine learning and statistics.
We establish the weak limit of the empirical distribution of these random matrices in a scaling regime.
Our results can be characterized as the free additive convolution between a Marchenko-Pastur law and a semicircle law.
arXiv Detail & Related papers (2022-05-12T18:50:21Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
This paper uses techniques from Random Matrix Theory to find the ideal training-testing data split for a simple linear regression.
It defines "ideal" as satisfying the integrity metric, i.e. the empirical model error is the actual measurement noise.
This paper is the first to solve for the training and test size for any model in a way that is truly optimal.
arXiv Detail & Related papers (2021-12-11T13:18:33Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Deformed semicircle law and concentration of nonlinear random matrices
for ultra-wide neural networks [29.03095282348978]
We study the limiting spectral distributions of two empirical kernel matrices associated with $f(X)$.
We show that random feature regression induced by the empirical kernel achieves the same performance as its limiting kernel regression under the ultra-wide regime.
arXiv Detail & Related papers (2021-09-20T05:25:52Z) - Fourier Sparse Leverage Scores and Approximate Kernel Learning [29.104055676527913]
We prove new explicit upper bounds on the leverage scores of Fourier functions under both the Gaussian and Laplace measures.
Our bounds are motivated by two important applications in machine learning.
arXiv Detail & Related papers (2020-06-12T17:25:39Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
This article characterizes the exacts of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$ is all large and comparable.
This analysis also provides accurate estimates of training and test regression errors for large $n,p,N$.
arXiv Detail & Related papers (2020-06-09T02:05:40Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.