Rethinking Pre-trained Feature Extractor Selection in Multiple Instance Learning for Whole Slide Image Classification
- URL: http://arxiv.org/abs/2408.01167v2
- Date: Fri, 08 Nov 2024 02:01:00 GMT
- Title: Rethinking Pre-trained Feature Extractor Selection in Multiple Instance Learning for Whole Slide Image Classification
- Authors: Bryan Wong, Mun Yong Yi,
- Abstract summary: Multiple instance learning (MIL) has become a preferred method for gigapixel whole slide image (WSI) classification without requiring patch-level annotations.
This study systematically evaluating MIL feature extractors across three dimensions: pre-training dataset, backbone model, and pre-training method.
Our findings reveal that selecting a robust self-supervised learning (SSL) method has a greater impact on performance than relying solely on an in-domain pre-training dataset.
- Score: 2.6703221234079946
- License:
- Abstract: Multiple instance learning (MIL) has become a preferred method for gigapixel whole slide image (WSI) classification without requiring patch-level annotations. Current MIL research primarily relies on embedding-based approaches, which extract patch features using a pre-trained feature extractor and aggregate them for slide-level prediction. Despite the critical role of feature extraction, there is limited guidance on selecting optimal feature extractors to maximize WSI performance. This study addresses this gap by systematically evaluating MIL feature extractors across three dimensions: pre-training dataset, backbone model, and pre-training method. Extensive experiments were conducted on two public WSI datasets (TCGA-NSCLC and Camelyon16) using four state-of-the-art (SOTA) MIL models. Our findings reveal that selecting a robust self-supervised learning (SSL) method has a greater impact on performance than relying solely on an in-domain pre-training dataset. Additionally, prioritizing Transformer-based backbones with deeper architectures over CNN-based models and using larger, more diverse pre-training datasets significantly enhances classification outcomes. We believe these insights provide practical guidance for optimizing WSI classification and explain the reasons behind the performance advantages of current SOTA pathology foundation models. Furthermore, this work may inform the development of more effective foundation models. Our code is publicly available at https://anonymous.4open.science/r/MIL-Feature-Extractor-Selection
Related papers
- Queryable Prototype Multiple Instance Learning with Vision-Language Models for Incremental Whole Slide Image Classification [10.667645628712542]
This paper proposes the first Vision-Language-based framework with Queryable Prototype Multiple Instance Learning (QPMIL-VL) specially designed for incremental WSI classification.
experiments on four TCGA datasets demonstrate that our QPMIL-VL framework is effective for incremental WSI classification.
arXiv Detail & Related papers (2024-10-14T14:49:34Z) - An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
We propose an efficient framework for cervical cytopathology WSI classification using only WSI-level labels through unsupervised and weakly supervised learning.
Experiments conducted on the CSD and FNAC 2019 datasets demonstrate that the proposed method enhances the performance of various MIL methods and achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-07-16T08:21:54Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - SSPNet: Scale and Spatial Priors Guided Generalizable and Interpretable
Pedestrian Attribute Recognition [23.55622798950833]
A novel Scale and Spatial Priors Guided Network (SSPNet) is proposed for Pedestrian Attribute Recognition (PAR) models.
SSPNet learns to provide reasonable scale prior information for different attribute groups, allowing the model to focus on different levels of feature maps.
A novel IoU based attribute localization metric is proposed for Weakly-supervised Pedestrian Attribute localization (WPAL) based on the improved Grad-CAM for attribute response mask.
arXiv Detail & Related papers (2023-12-11T00:41:40Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Towards Better Object Detection in Scale Variation with Adaptive Feature
Selection [3.5352273012717044]
We propose a novel adaptive feature selection module (AFSM) to automatically learn the way to fuse multi-level representations in the channel dimension.
It significantly improves the performance of the detectors that have a feature pyramid structure.
A class-aware sampling mechanism (CASM) is proposed to tackle the class imbalance problem.
arXiv Detail & Related papers (2020-12-06T13:41:20Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.