論文の概要: Optimizing Variational Quantum Circuits Using Metaheuristic Strategies in Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2408.01187v1
- Date: Fri, 2 Aug 2024 11:14:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 13:37:26.412196
- Title: Optimizing Variational Quantum Circuits Using Metaheuristic Strategies in Reinforcement Learning
- Title(参考訳): 強化学習におけるメタヒューリスティック戦略を用いた変分量子回路の最適化
- Authors: Michael Kölle, Daniel Seidl, Maximilian Zorn, Philipp Altmann, Jonas Stein, Thomas Gabor,
- Abstract要約: 本研究では,メタヒューリスティックアルゴリズム – Particle Swarm Optimization, Ant Colony Optimization, Tabu Search, Genetic Algorithm, Simulated Annealing, Harmony Search – の量子強化学習への統合について検討する。
5Times5$ MiniGrid Reinforcement Learning環境の評価は、すべてのアルゴリズムがほぼ最適結果をもたらすことを示している。
- 参考スコア(独自算出の注目度): 2.7504809152812695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Reinforcement Learning (QRL) offers potential advantages over classical Reinforcement Learning, such as compact state space representation and faster convergence in certain scenarios. However, practical benefits require further validation. QRL faces challenges like flat solution landscapes, where traditional gradient-based methods are inefficient, necessitating the use of gradient-free algorithms. This work explores the integration of metaheuristic algorithms -- Particle Swarm Optimization, Ant Colony Optimization, Tabu Search, Genetic Algorithm, Simulated Annealing, and Harmony Search -- into QRL. These algorithms provide flexibility and efficiency in parameter optimization. Evaluations in $5\times5$ MiniGrid Reinforcement Learning environments show that, all algorithms yield near-optimal results, with Simulated Annealing and Particle Swarm Optimization performing best. In the Cart Pole environment, Simulated Annealing, Genetic Algorithms, and Particle Swarm Optimization achieve optimal results, while the others perform slightly better than random action selection. These findings demonstrate the potential of Particle Swarm Optimization and Simulated Annealing for efficient QRL learning, emphasizing the need for careful algorithm selection and adaptation.
- Abstract(参考訳): 量子強化学習(QRL)は、特定のシナリオにおいて、コンパクトな状態空間表現やより高速な収束など、古典的な強化学習よりも潜在的に有利である。
しかし、実際的な利点はさらなる検証を必要とする。
QRLはフラットなソリューションランドスケープのような課題に直面している。
本研究では,メタヒューリスティックアルゴリズム – Particle Swarm Optimization, Ant Colony Optimization, Tabu Search, Genetic Algorithm, Simulated Annealing, Harmony Search – のQRLへの統合について検討する。
これらのアルゴリズムはパラメータ最適化の柔軟性と効率性を提供する。
5\times5$ MiniGrid Reinforcement Learning環境の評価は、全てのアルゴリズムが最適に近い結果を得ることを示している。
キャットポール環境では、シミュレートされたアニーリング、遺伝的アルゴリズム、パーティクルスワーム最適化が最適な結果を得る一方、他はランダムなアクション選択よりも若干良い結果が得られる。
これらの結果から,QRL学習を効率的に行うために,Particle Swarm Optimization と Simulated Annealing の可能性を示唆し,アルゴリズムの選択と適応を慎重に行う必要性を強調した。
関連論文リスト
- Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Adaptive Approach For Sparse Representations Using The Locally
Competitive Algorithm For Audio [5.6394515393964575]
本稿ではガンマチャープのパラメータを最適化するための適応的アプローチを提案する。
提案手法はLCAのニューラルネットワークを利用してガンマチャープのフィルタバンクを自動的に適応する。
以上の結果から, このアプローチによるLCAの性能向上は, スパーシリティ, 再建品質, 収束時間の観点から示される。
論文 参考訳(メタデータ) (2021-09-29T20:26:16Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
ランダムサンプリングではなく,ZO最適化における摂動を生成するためのサンプリングポリシを学習する,新たな強化学習ベースのZOアルゴリズムを提案する。
その結果,ZO-RLアルゴリズムはサンプリングポリシを学習することでZO勾配の分散を効果的に低減し,既存のZOアルゴリズムよりも高速に収束できることが示唆された。
論文 参考訳(メタデータ) (2021-04-09T14:50:59Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
従来の手法に関する進化的アルゴリズムの利点は、文献で大いに議論されている。
粒子群はそのような利点を共有しているが、計算コストの低減と実装の容易さが要求されるため、進化的アルゴリズムよりも優れている。
本論文は, それらのチューニングについて検討するものではなく, 従来の研究から汎用的な設定を抽出し, 様々な問題を最適化するために, 事実上同じアルゴリズムを用いている。
論文 参考訳(メタデータ) (2021-01-25T02:06:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Learning to be Global Optimizer [28.88646928299302]
いくつかのベンチマーク関数に対して最適なネットワークとエスケープ能力アルゴリズムを学習する。
学習したアルゴリズムは、よく知られた古典最適化アルゴリズムよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2020-03-10T03:46:25Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。