論文の概要: Adaptive Approach For Sparse Representations Using The Locally
Competitive Algorithm For Audio
- arxiv url: http://arxiv.org/abs/2109.14705v1
- Date: Wed, 29 Sep 2021 20:26:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-01 14:49:07.704396
- Title: Adaptive Approach For Sparse Representations Using The Locally
Competitive Algorithm For Audio
- Title(参考訳): 局所競合アルゴリズムを用いたスパース表現への適応的アプローチ
- Authors: Soufiyan Bahadi, Jean Rouat, and \'Eric Plourde
- Abstract要約: 本稿ではガンマチャープのパラメータを最適化するための適応的アプローチを提案する。
提案手法はLCAのニューラルネットワークを利用してガンマチャープのフィルタバンクを自動的に適応する。
以上の結果から, このアプローチによるLCAの性能向上は, スパーシリティ, 再建品質, 収束時間の観点から示される。
- 参考スコア(独自算出の注目度): 5.6394515393964575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gammachirp filterbank has been used to approximate the cochlea in sparse
coding algorithms. An oriented grid search optimization was applied to adapt
the gammachirp's parameters and improve the Matching Pursuit (MP) algorithm's
sparsity along with the reconstruction quality. However, this combination of a
greedy algorithm with a grid search at each iteration is computationally
demanding and not suitable for real-time applications. This paper presents an
adaptive approach to optimize the gammachirp's parameters but in the context of
the Locally Competitive Algorithm (LCA) that requires much fewer computations
than MP. The proposed method consists of taking advantage of the LCA's neural
architecture to automatically adapt the gammachirp's filterbank using the
backpropagation algorithm. Results demonstrate an improvement in the LCA's
performance with our approach in terms of sparsity, reconstruction quality, and
convergence time. This approach can yield a significant advantage over existing
approaches for real-time applications.
- Abstract(参考訳): Gammachirp filterbankはスパース符号化アルゴリズムのコチェリーを近似するために使われてきた。
指向型グリッド探索最適化により、ガンマチャープのパラメータを適応させ、mpアルゴリズムのスパーシティと再構成品質を改善した。
しかし、各イテレーションにおけるグリッド探索と欲張りなアルゴリズムの組み合わせは計算上必要であり、リアルタイムアプリケーションには適さない。
本稿では、ガンマチャープのパラメータを最適化する適応的手法を提案するが、MPよりもはるかに少ない計算を必要とする局所競合アルゴリズム(LCA)の文脈で述べる。
提案手法は, バックプロパゲーションアルゴリズムを用いて, ガンマチャープのフィルタバンクを自動的に適応するためのLCAのニューラルネットワークアーキテクチャを利用する。
以上の結果から, このアプローチによるLCAの性能向上は, スパーシリティ, 再建品質, 収束時間の観点から示される。
このアプローチは、リアルタイムアプリケーションに対する既存のアプローチを大きく上回る可能性がある。
関連論文リスト
- Optimizing Variational Quantum Circuits Using Metaheuristic Strategies in Reinforcement Learning [2.7504809152812695]
本研究では,メタヒューリスティックアルゴリズム – Particle Swarm Optimization, Ant Colony Optimization, Tabu Search, Genetic Algorithm, Simulated Annealing, Harmony Search – の量子強化学習への統合について検討する。
5Times5$ MiniGrid Reinforcement Learning環境の評価は、すべてのアルゴリズムがほぼ最適結果をもたらすことを示している。
論文 参考訳(メタデータ) (2024-08-02T11:14:41Z) - Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
本稿では,アナログ回路の自動サイズ化手法について述べる。
探索空間を対象とする探索は粒子生成関数と補修バウンド関数を用いて実装されている。
アルゴリズムは、より良い最適解に収束するように調整され、修正される。
論文 参考訳(メタデータ) (2023-10-19T03:26:36Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Composite Optimization Algorithms for Sigmoid Networks [3.160070867400839]
線形化近位アルゴリズムと乗算器の交互方向に基づく合成最適化アルゴリズムを提案する。
フランク関数のフィッティングに関する数値実験により、提案アルゴリズムは十分堅牢に機能することを示した。
論文 参考訳(メタデータ) (2023-03-01T15:30:29Z) - Genetically Modified Wolf Optimization with Stochastic Gradient Descent
for Optimising Deep Neural Networks [0.0]
本研究の目的は、人口ベースメタヒューリスティックアルゴリズムを用いて、ニューラルネットワーク(NN)重み付けを最適化するための代替アプローチを分析することである。
Grey Wolf (GWO) と Genetic Modified Algorithms (GA) のハイブリッドをグラディエント・Descent (SGD) と組み合わせて検討した。
このアルゴリズムは、高次元性の問題にも対処しながら、エクスプロイトと探索の組み合わせを可能にする。
論文 参考訳(メタデータ) (2023-01-21T13:22:09Z) - Optimistic Optimisation of Composite Objective with Exponentiated Update [2.1700203922407493]
このアルゴリズムは指数勾配と$p$-normアルゴリズムの組み合わせと解釈できる。
彼らはシーケンス依存の後悔の上界を達成し、スパース目標決定変数の最もよく知られた境界と一致する。
論文 参考訳(メタデータ) (2022-08-08T11:29:55Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Optimization of Graph Total Variation via Active-Set-based Combinatorial
Reconditioning [48.42916680063503]
本稿では,この問題クラスにおける近位アルゴリズムの適応型事前条件付け手法を提案する。
不活性エッジのネスト・フォレスト分解により局所収束速度が保証されることを示す。
この結果から,局所収束解析は近似アルゴリズムにおける可変指標選択の指針となることが示唆された。
論文 参考訳(メタデータ) (2020-02-27T16:33:09Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。