Quantum Delocalization of a Levitated Nanoparticle
- URL: http://arxiv.org/abs/2408.01264v1
- Date: Fri, 2 Aug 2024 13:36:42 GMT
- Title: Quantum Delocalization of a Levitated Nanoparticle
- Authors: Massimiliano Rossi, Andrei Militaru, Nicola Carlon Zambon, Andreu Riera-Campeny, Oriol Romero-Isart, Martin Frimmer, Lukas Novotny,
- Abstract summary: We prepare a delocalized state of a levitating solid-state nanosphere with coherence length exceeding the zero-point motion.
Our work is a stepping stone towards the generation of delocalization scales comparable to the object size.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Every massive particle behaves like a wave, according to quantum physics. Yet, this characteristic wave nature has only been observed in double-slit experiments with microscopic systems, such as atoms and molecules. The key aspect is that the wavefunction describing the motion of these systems extends coherently over a distance comparable to the slit separation, much larger than the size of the system itself. Preparing these states of more massive and complex objects remains an outstanding challenge. While the motion of solid-state oscillators can now be controlled at the level of single quanta, their coherence length remains comparable to the zero-point motion, limited to subatomic distances. Here, we prepare a delocalized state of a levitating solid-state nanosphere with coherence length exceeding the zero-point motion. We first cool its motion to the ground state. Then, by modulating the stiffness of the confinement potential, we achieve more than a threefold increment of the initial coherence length with minimal added noise. Optical levitation gives us the necessary control over the confinement that other mechanical platforms lack. Our work is a stepping stone towards the generation of delocalization scales comparable to the object size, a crucial regime for macroscopic quantum experiments, and towards quantum-enhanced force sensing with levitated particles.
Related papers
- Coherent expansion of the motional state of a massive nanoparticle beyond its linear dimensions [0.0]
Quantum mechanics predicts that massive particles exhibit wave-like behavior.
We experimentally achieve an unprecedented degree of position diffusion in a massive levitated optomechanical system.
arXiv Detail & Related papers (2024-08-18T21:11:09Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Macroscopic Quantum Superpositions via Dynamics in a Wide Double-Well
Potential [0.0]
We present an experimental proposal for the rapid preparation of the center of mass of a levitated particle in a macroscopic quantum state.
This state is prepared by letting the particle evolve in a static double-well potential after a sudden switchoff of the harmonic trap.
We highlight the possibility of using two particles, one evolving in each potential well, to mitigate the impact of collective sources of noise and decoherence.
arXiv Detail & Related papers (2023-03-14T15:00:55Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Steady motional entanglement between two distant levitated nanoparticles [0.6091702876917279]
We consider two distant nanoparticles, both of which are optically trapped in two cavities.
Based on the coherent scattering mechanism, we find that the ultrastrong optomechanical coupling between the cavity modes and the motion of the levitated nanoparticles could achieve.
The large and steady entanglement between the filtered output cavity modes and the motion of nanosparticles can be generated, if the trapping laser is under the red sideband.
arXiv Detail & Related papers (2021-11-23T02:43:18Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Spin-mechanics with nitrogen-vacancy centers and trapped particles [0.0]
We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state.
Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that will enable these systems to unleash their full potential.
arXiv Detail & Related papers (2021-04-20T20:43:24Z) - Quantum control of a nanoparticle optically levitated in cryogenic free
space [0.0]
Tests of quantum mechanics on a macroscopic scale require extreme control over mechanical motion and its decoherence.
In this work, we optically levitate a femto-gram dielectric particle in cryogenic free space.
We cool its center-of-mass motion by measurement-based feedback to an average occupancy of 0.65 motional quanta, corresponding to a state purity of 43%.
arXiv Detail & Related papers (2021-03-05T18:12:50Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.