Coherent expansion of the motional state of a massive nanoparticle beyond its linear dimensions
- URL: http://arxiv.org/abs/2408.09596v2
- Date: Wed, 21 Aug 2024 06:58:05 GMT
- Title: Coherent expansion of the motional state of a massive nanoparticle beyond its linear dimensions
- Authors: R. Muffato, T. S. Georgescu, M. Carlesso, M. Paternostro, H. Ulbricht,
- Abstract summary: Quantum mechanics predicts that massive particles exhibit wave-like behavior.
We experimentally achieve an unprecedented degree of position diffusion in a massive levitated optomechanical system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum mechanics predicts that massive particles exhibit wave-like behavior. Matterwave interferometry has been able to validate such predictions through ground-breaking experiments involving microscopic systems like atoms and molecules. The wavefunction of such systems coherently extends over a distance much larger than their size, an achievement that is incredibly challenging for massive and more complex objects. Yet, reaching similar level of coherent diffusion will enable tests of fundamental physics at the genuinely macroscopic scale, as well as the development of quantum sensing apparata of great sensitivity. We report on experimentally achieving an unprecedented degree of position diffusion in a massive levitated optomechanical system through frequency modulation of the trapping potential. By starting with a pre-cooled state of motion and employing a train of sudden pulses yet of mild modulation depth, we surpass previously attained values of position diffusion in this class of systems to reach diffusion lengths that exceed the physical dimensions of the trapped nanoparticle.
Related papers
- Quantum Delocalization of a Levitated Nanoparticle [0.0]
We prepare a delocalized state of a levitating solid-state nanosphere with coherence length exceeding the zero-point motion.
Our work is a stepping stone towards the generation of delocalization scales comparable to the object size.
arXiv Detail & Related papers (2024-08-02T13:36:42Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Coherent spatial control of wave packet dynamics on quantum lattices [0.0]
We study wave packet diffusivity and diffusion length on quantum lattices subject to noise.
Our analysis points to the crucial role of spatial coherence and predicts a set of novel phenomena.
These theoretical predictions suggest the possibility of controlling the wave packet dynamics on quantum lattices by spatial manipulations.
arXiv Detail & Related papers (2023-11-13T11:39:35Z) - Optimal Superpositions for Particle Detection via Quantum Phase [0.0]
State of the art proposals for novel quantum sensors often rely on the creation of large superpositions.
We consider scattering interactions of directional particulate environments with a system in a quantum superposition.
We find that there is an "optimal superposition" size for measuring incoming particles via a relative phase.
arXiv Detail & Related papers (2023-07-27T20:30:20Z) - Macroscopic Quantum Superpositions via Dynamics in a Wide Double-Well
Potential [0.0]
We present an experimental proposal for the rapid preparation of the center of mass of a levitated particle in a macroscopic quantum state.
This state is prepared by letting the particle evolve in a static double-well potential after a sudden switchoff of the harmonic trap.
We highlight the possibility of using two particles, one evolving in each potential well, to mitigate the impact of collective sources of noise and decoherence.
arXiv Detail & Related papers (2023-03-14T15:00:55Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Fast Quantum Interference of a Nanoparticle via Optical Potential
Control [0.0]
We introduce and theoretically analyze a scheme to prepare and detect non-Gaussian quantum states of an optically levitated particle.
We show that this allows operating on short time- and lengthscales, which significantly reduces the demands on decoherence rates in such experiments.
arXiv Detail & Related papers (2022-07-25T21:28:12Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.