Certified Robust Invariant Polytope Training in Neural Controlled ODEs
- URL: http://arxiv.org/abs/2408.01273v1
- Date: Fri, 2 Aug 2024 13:55:26 GMT
- Title: Certified Robust Invariant Polytope Training in Neural Controlled ODEs
- Authors: Akash Harapanahalli, Samuel Coogan,
- Abstract summary: We consider a nonlinear control system modeled as an ordinary differential equation subject to disturbance, with a state feedback controller parameterized as a feedforward neural network.
We propose a framework for training controllers with certified robust forward invariant polytopes, where any trajectory inside the polytope remains within the polytope, regardless of the disturbance.
We demonstrate how the simplicity of the sign constraint allows our approach to scale with system dimension to over $50$ states, and outperform state-of-the-art Lyapunov-based sampling approaches in runtime.
- Score: 3.5481521547811976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a nonlinear control system modeled as an ordinary differential equation subject to disturbance, with a state feedback controller parameterized as a feedforward neural network. We propose a framework for training controllers with certified robust forward invariant polytopes, where any trajectory initialized inside the polytope remains within the polytope, regardless of the disturbance. First, we parameterize a family of lifted control systems in a higher dimensional space, where the original neural controlled system evolves on an invariant subspace of each lifted system. We use interval analysis and neural network verifiers to further construct a family of lifted embedding systems, carefully capturing the knowledge of this invariant subspace. If the vector field of any lifted embedding system satisfies a sign constraint at a single point, then a certain convex polytope of the original system is robustly forward invariant. Treating the neural network controller and the lifted system parameters as variables, we propose an algorithm to train controllers with certified forward invariant polytopes in the closed-loop control system. Through two examples, we demonstrate how the simplicity of the sign constraint allows our approach to scale with system dimension to over $50$ states, and outperform state-of-the-art Lyapunov-based sampling approaches in runtime.
Related papers
- Latent feedback control of distributed systems in multiple scenarios through deep learning-based reduced order models [3.5161229331588095]
Continuous monitoring and real-time control of high-dimensional distributed systems are crucial in applications to ensure a desired physical behavior.
Traditional feedback control design that relies on full-order models fails to meet these requirements due to the delay in the control computation.
We propose a real-time closed-loop control strategy enhanced by nonlinear non-intrusive Deep Learning-based Reduced Order Models (DL-ROMs)
arXiv Detail & Related papers (2024-12-13T08:04:21Z) - Sample-efficient Model-based Reinforcement Learning for Quantum Control [0.2999888908665658]
We propose a model-based reinforcement learning (RL) approach for noisy time-dependent gate optimization.
We show an order of magnitude advantage in the sample complexity of our method over standard model-free RL.
Our algorithm is well suited for controlling partially characterised one and two qubit systems.
arXiv Detail & Related papers (2023-04-19T15:05:19Z) - Automated Reachability Analysis of Neural Network-Controlled Systems via
Adaptive Polytopes [2.66512000865131]
We develop a new approach for over-approximating the reachable sets of neural network dynamical systems using adaptive template polytopes.
We illustrate the utility of the proposed approach in the reachability analysis of linear systems driven by neural network controllers.
arXiv Detail & Related papers (2022-12-14T23:49:53Z) - Controlling quantum many-body systems using reduced-order modelling [0.0]
We propose an efficient approach for solving a class of control problems for many-body quantum systems.
Simulating dynamics of such a reduced-order model, viewed as a digital twin" of the original subsystem, is significantly more efficient.
Our results will find direct applications in the study of many-body systems, in probing non-trivial quasiparticle properties, as well as in development control tools for quantum computing devices.
arXiv Detail & Related papers (2022-11-01T13:58:44Z) - Robust stabilization of polytopic systems via fast and reliable neural
network-based approximations [2.2299983745857896]
We consider the design of fast and reliable neural network (NN)-based approximations of traditional stabilizing controllers for linear systems with polytopic uncertainty.
We certify the closed-loop stability and performance of a linear uncertain system when a trained rectified linear unit (ReLU)-based approximation replaces such traditional controllers.
arXiv Detail & Related papers (2022-04-27T21:58:07Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Finite-time System Identification and Adaptive Control in Autoregressive
Exogenous Systems [79.67879934935661]
We study the problem of system identification and adaptive control of unknown ARX systems.
We provide finite-time learning guarantees for the ARX systems under both open-loop and closed-loop data collection.
arXiv Detail & Related papers (2021-08-26T18:00:00Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Improper Learning for Non-Stochastic Control [78.65807250350755]
We consider the problem of controlling a possibly unknown linear dynamical system with adversarial perturbations, adversarially chosen convex loss functions, and partially observed states.
Applying online descent to this parametrization yields a new controller which attains sublinear regret vs. a large class of closed-loop policies.
Our bounds are the first in the non-stochastic control setting that compete with emphall stabilizing linear dynamical controllers.
arXiv Detail & Related papers (2020-01-25T02:12:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.