Robust stabilization of polytopic systems via fast and reliable neural
network-based approximations
- URL: http://arxiv.org/abs/2204.13209v2
- Date: Tue, 23 Jan 2024 17:31:48 GMT
- Title: Robust stabilization of polytopic systems via fast and reliable neural
network-based approximations
- Authors: Filippo Fabiani, Paul J. Goulart
- Abstract summary: We consider the design of fast and reliable neural network (NN)-based approximations of traditional stabilizing controllers for linear systems with polytopic uncertainty.
We certify the closed-loop stability and performance of a linear uncertain system when a trained rectified linear unit (ReLU)-based approximation replaces such traditional controllers.
- Score: 2.2299983745857896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the design of fast and reliable neural network (NN)-based
approximations of traditional stabilizing controllers for linear systems with
polytopic uncertainty, including control laws with variable structure and those
based on a (minimal) selection policy. Building upon recent approaches for the
design of reliable control surrogates with guaranteed structural properties, we
develop a systematic procedure to certify the closed-loop stability and
performance of a linear uncertain system when a trained rectified linear unit
(ReLU)-based approximation replaces such traditional controllers. First, we
provide a sufficient condition, which involves the worst-case approximation
error between ReLU-based and traditional controller-based state-to-input
mappings, ensuring that the system is ultimately bounded within a set with
adjustable size and convergence rate. Then, we develop an offline,
mixed-integer optimization-based method that allows us to compute that quantity
exactly.
Related papers
- Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
Neural Networks (NNs) can be leveraged to parametrize control policies that yield good performance.
NNs' sensitivity to small input changes poses a risk of destabilizing the closed-loop system.
To address these problems, we leverage the framework of port-Hamiltonian systems to design continuous-time distributed control policies.
The effectiveness of the proposed distributed controllers is demonstrated through consensus control of non-holonomic mobile robots.
arXiv Detail & Related papers (2024-11-15T10:44:29Z) - Stability Bounds for Learning-Based Adaptive Control of Discrete-Time
Multi-Dimensional Stochastic Linear Systems with Input Constraints [3.8004168340068336]
We consider the problem of adaptive stabilization for discrete-time, multi-dimensional systems with bounded control input constraints and unbounded disturbances.
We propose a certainty-equivalent control scheme which combines online parameter estimation with saturated linear control.
arXiv Detail & Related papers (2023-04-02T16:38:13Z) - Reliably-stabilizing piecewise-affine neural network controllers [5.203329540700177]
A common problem affecting neural network (NN) approximations of model predictive control (MPC) policies is the lack of analytical tools to assess the stability of the closed-loop system under the action of the NN-based controller.
We present a general procedure to quantify the performance of such a controller, or to design minimum complexity NNs that preserve the desirable properties of a given MPC scheme.
arXiv Detail & Related papers (2021-11-13T20:01:43Z) - Stabilizing Dynamical Systems via Policy Gradient Methods [32.88312419270879]
We provide a model-free algorithm for stabilizing fully observed dynamical systems.
We prove that this method efficiently recovers a stabilizing controller for linear systems.
We empirically evaluate the effectiveness of our approach on common control benchmarks.
arXiv Detail & Related papers (2021-10-13T00:58:57Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Robust Stability of Neural-Network Controlled Nonlinear Systems with
Parametric Variability [2.0199917525888895]
We develop a theory for stability and stabilizability of a class of neural-network controlled nonlinear systems.
For computing such a robust stabilizing NN controller, a stability guaranteed training (SGT) is also proposed.
arXiv Detail & Related papers (2021-09-13T05:09:30Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Stable Online Control of Linear Time-Varying Systems [49.41696101740271]
COCO-LQ is an efficient online control algorithm that guarantees input-to-state stability for a large class of LTV systems.
We empirically demonstrate the performance of COCO-LQ in both synthetic experiments and a power system frequency control example.
arXiv Detail & Related papers (2021-04-29T06:18:49Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
We propose a generic nonlinear control policy class, parameterized by neural networks, that enforces the same provable robustness criteria as robust control.
We demonstrate the power of this approach on several domains, improving in average-case performance over existing robust control methods and in worst-case stability over (non-robust) deep RL methods.
arXiv Detail & Related papers (2020-11-16T17:14:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.