A Backbone for Long-Horizon Robot Task Understanding
- URL: http://arxiv.org/abs/2408.01334v2
- Date: Wed, 7 Aug 2024 12:01:58 GMT
- Title: A Backbone for Long-Horizon Robot Task Understanding
- Authors: Xiaoshuai Chen, Wei Chen, Dongmyoung Lee, Yukun Ge, Nicolas Rojas, Petar Kormushev,
- Abstract summary: We propose a novel Therblig-based Backbone Framework (TBBF) to enhance robot task understanding and transferability.
This framework uses therbligs as the backbone to decompose high-level robot tasks into elemental robot configurations.
Experimental results validate these methods, achieving 94.37% recall in therblig segmentation and success rates of 94.4% and 80% in real-world online robot testing.
- Score: 8.889888977376886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end robot learning, particularly for long-horizon tasks, often results in unpredictable outcomes and poor generalization. To address these challenges, we propose a novel Therblig-based Backbone Framework (TBBF) to enhance robot task understanding and transferability. This framework uses therbligs (basic action elements) as the backbone to decompose high-level robot tasks into elemental robot configurations, which are then integrated with current foundation models to improve task understanding. The approach consists of two stages: offline training and online testing. During the offline training stage, we developed the Meta-RGate SynerFusion (MGSF) network for accurate therblig segmentation across various tasks. In the online testing stage, after a one-shot demonstration of a new task is collected, our MGSF network extracts high-level knowledge, which is then encoded into the image using Action Registration (ActionREG). Additionally, the Large Language Model (LLM)-Alignment Policy for Visual Correction (LAP-VC) is employed to ensure precise action execution, facilitating trajectory transfer in novel robot scenarios. Experimental results validate these methods, achieving 94.37% recall in therblig segmentation and success rates of 94.4% and 80% in real-world online robot testing for simple and complex scenarios, respectively. Supplementary material is available at: https://sites.google.com/view/therbligsbasedbackbone/home
Related papers
- Single-Shot Learning of Stable Dynamical Systems for Long-Horizon Manipulation Tasks [48.54757719504994]
This paper focuses on improving task success rates while reducing the amount of training data needed.
Our approach introduces a novel method that segments long-horizon demonstrations into discrete steps defined by waypoints and subgoals.
We validate our approach through both simulation and real-world experiments, demonstrating effective transfer from simulation to physical robotic platforms.
arXiv Detail & Related papers (2024-10-01T19:49:56Z) - Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers [41.069074375686164]
We propose Heterogeneous Pre-trained Transformers (HPT), which pre-train a trunk of a policy neural network to learn a task and embodiment shared representation.
We conduct experiments to investigate the scaling behaviors of training objectives, to the extent of 52 datasets.
HPTs outperform several baselines and enhance the fine-tuned policy performance by over 20% on unseen tasks.
arXiv Detail & Related papers (2024-09-30T17:39:41Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Learn Fast, Segment Well: Fast Object Segmentation Learning on the iCub
Robot [20.813028212068424]
We study different techniques that allow adapting an object segmentation model in presence of novel objects or different domains.
We propose a pipeline for fast instance segmentation learning for robotic applications where data come in stream.
We benchmark the proposed pipeline on two datasets and we deploy it on a real robot, iCub humanoid.
arXiv Detail & Related papers (2022-06-27T17:14:04Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - SQUIRL: Robust and Efficient Learning from Video Demonstration of
Long-Horizon Robotic Manipulation Tasks [8.756012472587601]
Deep reinforcement learning (RL) can be used to learn complex manipulation tasks.
RL requires the robot to collect a large amount of real-world experience.
S SQUIRL performs a new but related long-horizon task robustly given only a single video demonstration.
arXiv Detail & Related papers (2020-03-10T20:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.