PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning
- URL: http://arxiv.org/abs/2408.04054v2
- Date: Thu, 17 Oct 2024 00:21:46 GMT
- Title: PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning
- Authors: Amisha Bhaskar, Zahiruddin Mahammad, Sachin R Jadhav, Pratap Tokekar,
- Abstract summary: We introduce PLANRL, a framework that chooses when the robot should use classical motion planning and when it should learn a policy.
PLANRL switches between two modes of operation: reaching a waypoint using classical techniques when away from the objects and fine-grained manipulation control when about to interact with objects.
We evaluate our approach across multiple challenging simulation environments and real-world tasks, demonstrating superior performance in terms of adaptability, efficiency, and generalization compared to existing methods.
- Score: 13.564676246832544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) has shown remarkable progress in simulation environments, yet its application to real-world robotic tasks remains limited due to challenges in exploration and generalization. To address these issues, we introduce PLANRL, a framework that chooses when the robot should use classical motion planning and when it should learn a policy. To further improve the efficiency in exploration, we use imitation data to bootstrap the exploration. PLANRL dynamically switches between two modes of operation: reaching a waypoint using classical techniques when away from the objects and reinforcement learning for fine-grained manipulation control when about to interact with objects. PLANRL architecture is composed of ModeNet for mode classification, NavNet for waypoint prediction, and InteractNet for precise manipulation. By combining the strengths of RL and Imitation Learning (IL), PLANRL improves sample efficiency and mitigates distribution shift, ensuring robust task execution. We evaluate our approach across multiple challenging simulation environments and real-world tasks, demonstrating superior performance in terms of adaptability, efficiency, and generalization compared to existing methods. In simulations, PLANRL surpasses baseline methods by 10-15\% in training success rates at 30k samples and by 30-40\% during evaluation phases. In real-world scenarios, it demonstrates a 30-40\% higher success rate on simpler tasks compared to baselines and uniquely succeeds in complex, two-stage manipulation tasks. Datasets and supplementary materials can be found on our {https://raaslab.org/projects/NAVINACT/}.
Related papers
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
We introduce a novel RL algorithm that learns a critic network that outputs Q-values over a sequence of actions.
By explicitly training the value functions to learn the consequence of executing a series of current and future actions, our algorithm allows for learning useful value functions from noisy trajectories.
arXiv Detail & Related papers (2024-11-19T01:23:52Z) - MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning [17.437573206368494]
Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks.
Current algorithms suffer from low sample efficiency, limiting their practical applicability.
We present MENTOR, a method that improves both the architecture and optimization of RL agents.
arXiv Detail & Related papers (2024-10-19T04:31:54Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - ReProHRL: Towards Multi-Goal Navigation in the Real World using
Hierarchical Agents [1.3194749469702445]
We present Ready for Production Hierarchical RL (ReProHRL) that divides tasks with hierarchical multi-goal navigation guided by reinforcement learning.
We also use object detectors as a pre-processing step to learn multi-goal navigation and transfer it to the real world.
For the real-world implementation and proof of concept demonstration, we deploy the proposed method on a nano-drone named Crazyflie with a front camera.
arXiv Detail & Related papers (2023-08-17T02:23:59Z) - MoDem: Accelerating Visual Model-Based Reinforcement Learning with
Demonstrations [36.44386146801296]
Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications.
We find that leveraging just a handful of demonstrations can dramatically improve the sample-efficiency of model-based RL.
We empirically study three complex visuo-motor control domains and find that our method is 150%-250% more successful in completing sparse reward tasks.
arXiv Detail & Related papers (2022-12-12T04:28:50Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing [2.6519061087638014]
We propose a new approach for informative path planning based on deep reinforcement learning (RL)
Our method combines Monte Carlo tree search with an offline-learned neural network predicting informative sensing actions.
By deploying the trained network during a mission, our method enables sample-efficient online replanning on physical platforms with limited computational resources.
arXiv Detail & Related papers (2021-09-28T09:00:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.