Time-efficient logical operations on quantum LDPC codes
- URL: http://arxiv.org/abs/2408.01339v2
- Date: Mon, 12 Aug 2024 02:05:35 GMT
- Title: Time-efficient logical operations on quantum LDPC codes
- Authors: Guo Zhang, Ying Li,
- Abstract summary: We propose schemes capable of measuring an arbitrary set of commutative logical Pauli operators in time independent of the number of operators.
The only condition is commutativity, a fundamental requirement for simultaneous measurements in quantum mechanics.
- Score: 5.881311286656519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose schemes capable of measuring an arbitrary set of commutative logical Pauli operators in time independent of the number of operators. The only condition is commutativity, a fundamental requirement for simultaneous measurements in quantum mechanics. Quantum low-density parity check (LDPC) codes show great promise for realising fault-tolerant quantum computing. They are particularly significant for early fault-tolerant technologies as they can encode many logical qubits using relatively few physical qubits. By achieving simultaneous measurements of logical operators, our approaches enable fully parallelised quantum computing, thus minimising computation time. Our schemes are applicable to any quantum LDPC codes and maintain the low density of parity checks while measuring multiple logical operators simultaneously. These results enhance the feasibility of applying early fault-tolerant technologies to practical problems.
Related papers
- Polylog-time- and constant-space-overhead fault-tolerant quantum computation with quantum low-density parity-check codes [2.048226951354646]
A major challenge in fault-tolerant quantum computation is to reduce both space overhead and time overhead.
We show that a protocol using non-vanishing-rate quantum low-density parity-check codes achieves constant space overhead and polylogarithmic time overhead.
arXiv Detail & Related papers (2024-11-06T06:06:36Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Generalized Space-Efficient Algorithm for Quantum Bit String
Comparators [0.0]
We introduce a design for the comparison of two $n$-qubit logic states using just two ancillary bits.
The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development.
arXiv Detail & Related papers (2023-11-11T14:01:35Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Error-Tolerant Geometric Quantum Control for Logical Qubits with Minimal
Resource [4.354697470999286]
We propose a new fast and robust geometric scheme, with the decoherence-free-subspace encoding, and present its physical implementation on superconducting quantum circuits.
Our scheme can consolidate both error suppression methods for logical-qubit control, which sheds light on the future large-scale quantum computation.
arXiv Detail & Related papers (2021-12-16T12:10:41Z) - Low-overhead fault-tolerant quantum computing using long-range
connectivity [2.867517731896504]
Scheme for low-overhead fault-tolerant quantum computation based on quantum low-density parity-check codes.
We estimate order-of-magnitude improvements in the overheads for processing around one hundred logical qubits.
arXiv Detail & Related papers (2021-10-20T21:49:48Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Relaxation times do not capture logical qubit dynamics [50.04886706729045]
We show that spatial noise correlations can give rise to rich and counter-intuitive dynamical behavior of logical qubits.
This work will help to guide and benchmark experimental implementations of logical qubits.
arXiv Detail & Related papers (2020-12-14T19:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.