論文の概要: Balanced Residual Distillation Learning for 3D Point Cloud Class-Incremental Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2408.01356v1
- Date: Fri, 2 Aug 2024 16:09:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 12:58:15.398516
- Title: Balanced Residual Distillation Learning for 3D Point Cloud Class-Incremental Semantic Segmentation
- Title(参考訳): 3次元クラウドクラスインクリメンタルセマンティックセグメンテーションのための残差蒸留学習
- Authors: Yuanzhi Su, Siyuan Chen, Yuan-Gen Wang,
- Abstract要約: CIL(Class-incremental Learning)は,新たなクラスを継続的に追加して学習することで,情報流入の処理に成功したことにより成長する。
そこで本研究では,CILの性能バーを高いレベルに押し上げるために,新しい残圧蒸留フレームワーク(BRD-CIL)を提案する。
- 参考スコア(独自算出の注目度): 13.627816749091727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class-incremental learning (CIL) thrives due to its success in processing the influx of information by learning from continuously added new classes while preventing catastrophic forgetting about the old ones. It is essential for the performance breakthrough of CIL to effectively refine past knowledge from the base model and balance it with new learning. However, such an issue has not yet been considered in current research. In this work, we explore the potential of CIL from these perspectives and propose a novel balanced residual distillation framework (BRD-CIL) to push the performance bar of CIL to a new higher level. Specifically, BRD-CIL designs a residual distillation learning strategy, which can dynamically expand the network structure to capture the residuals between the base and target models, effectively refining the past knowledge. Furthermore, BRD-CIL designs a balanced pseudo-label learning strategy by generating a guidance mask to reduce the preference for old classes, ensuring balanced learning from new and old classes. We apply the proposed BRD-CIL to a challenging 3D point cloud semantic segmentation task where the data are unordered and unstructured. Extensive experimental results demonstrate that BRD-CIL sets a new benchmark with an outstanding balance capability in class-biased scenarios.
- Abstract(参考訳): クラスインクリメンタルラーニング(CIL)は,新たなクラスを継続的に追加して学習することで情報の流入を処理し,古いクラスに対する破滅的な忘れ込みを防ぐことで成長する。
CILのパフォーマンスのブレークスルーは、過去の知識をベースモデルから効果的に洗練し、それを新しい学習とバランスさせることが不可欠です。
しかし、この問題は現在の研究ではまだ検討されていない。
本研究では, これらの観点からCILの可能性を探究し, CILの性能バーをより高レベルに押し上げるために, 新しい残圧蒸留フレームワーク(BRD-CIL)を提案する。
具体的には、BRD-CILは、ネットワーク構造を動的に拡張し、ベースモデルとターゲットモデルの間の残差を捕捉し、過去の知識を効果的に精製する残差蒸留学習戦略を設計する。
さらに、BRD-CILは、古いクラスの嗜好を減らし、新しいクラスと古いクラスとのバランスの取れた学習を確保するためのガイダンスマスクを生成することで、バランスの取れた擬似ラベル学習戦略を設計する。
提案したBRD-CILを,データを非順序で非構造化した3Dポイントクラウドセマンティックセマンティックセグメンテーションタスクに適用する。
大規模な実験結果から,BRD-CILは,クラスバイアスシナリオにおけるバランス能力に優れる新しいベンチマークを設定できることがわかった。
関連論文リスト
- Strike a Balance in Continual Panoptic Segmentation [60.26892488010291]
既存の知識の安定性と新しい情報への適応性のバランスをとるため,過去クラスのバックトレース蒸留を導入する。
また,リプレイ用サンプルセットのクラス分布と過去のトレーニングデータとの整合性を考慮したクラス比記憶戦略を導入する。
連続パノプティカルバランス(BalConpas)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T09:58:20Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
本報告では, オフラヤの非効率な取扱いから, この不整合が生じることを解析する。
本稿では,ロバスト連続学習(RCL)手法を提案する。
提案手法は, 堅牢性を効果的に維持し, 新たなSOTA(State-of-the-art)結果を得る。
論文 参考訳(メタデータ) (2024-05-27T11:21:26Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
半教師付き連続学習(SSCL)に焦点をあて、そのモデルが未知のカテゴリを持つ部分ラベル付きデータから徐々に学習する。
半教師付き連続学習のための動的サブグラフ蒸留法(DSGD)を提案する。
論文 参考訳(メタデータ) (2023-12-27T04:40:12Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
ディープニューラルネットワークは、新しいカテゴリーを学ぶ際に破滅的な忘れ方に悩まされる。
本稿では,新たなカテゴリを適応的に学習するためのモデルとして,新しい2段階学習パラダイムFOSTERを提案する。
論文 参考訳(メタデータ) (2022-04-10T11:38:33Z) - Self-Sustaining Representation Expansion for Non-Exemplar
Class-Incremental Learning [138.35405462309456]
非典型的なクラス増分学習は、古いクラスサンプルを保存できない場合に、古いクラスと新しいクラスの両方を認識することである。
提案手法は,メインブランチ拡張とサイドブランチ更新を融合して旧機能を維持する構造再構成戦略から成り立っている。
蒸留プロセスに新しい試料を選択的に組み込むことにより, 旧クラスと新クラスの識別性を高めるための試作機選択機構を提案する。
論文 参考訳(メタデータ) (2022-03-12T06:42:20Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - Class-incremental Learning with Rectified Feature-Graph Preservation [24.098892115785066]
本論文の中心的なテーマは,逐次的な段階を経る新しいクラスを学習することである。
旧知識保存のための重み付きユークリッド正規化を提案する。
新しいクラスを効果的に学習するために、クラス分離を増やすためにバイナリクロスエントロピーでどのように機能するかを示す。
論文 参考訳(メタデータ) (2020-12-15T07:26:04Z) - Two-Level Residual Distillation based Triple Network for Incremental
Object Detection [21.725878050355824]
本稿では,より高速なR-CNNに基づく新しいインクリメンタルオブジェクト検出手法を提案する。
従来の学習知識を忘れることなく、新しいクラスでの漸進的なモデル学習を支援するためのアシスタントとして、古いモデルと残留モデルを使用する三重ネットワークである。
論文 参考訳(メタデータ) (2020-07-27T11:04:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。