論文の概要: Spatial and Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2408.01372v3
- Date: Sat, 30 Nov 2024 13:24:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:55:02.425625
- Title: Spatial and Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification
- Title(参考訳): ハイパースペクトル画像分類のための空間・空間スペクトル形態マンバ
- Authors: Muhammad Ahmad, Muhammad Hassaan Farooq Butt, Adil Mehmood Khan, Manuel Mazzara, Salvatore Distefano, Muhammad Usama, Swalpa Kumar Roy, Jocelyn Chanussot, Danfeng Hong,
- Abstract要約: 形態空間マンバ(SMM)モデルと形態空間スペクトルマンバ(SSMM)モデル(MorpMamba)を提案する。
MorpMambaは、形態的操作の強みと状態空間モデルフレームワークを組み合わせることで、トランスフォーマーのより効率的な代替手段を提供する。
広く使われているHSIデータセットの実験結果から、MorpMambaは従来のCNNやトランスフォーマーモデルよりも優れたパラメトリック効率を実現することが示された。
- 参考スコア(独自算出の注目度): 27.943537708598306
- License:
- Abstract: Recent advancements in transformers, specifically self-attention mechanisms, have significantly improved hyperspectral image (HSI) classification. However, these models often suffer from inefficiencies, as their computational complexity scales quadratically with sequence length. To address these challenges, we propose the morphological spatial mamba (SMM) and morphological spatial-spectral Mamba (SSMM) model (MorpMamba), which combines the strengths of morphological operations and the state space model framework, offering a more computationally efficient alternative to transformers. In MorpMamba, a novel token generation module first converts HSI patches into spatial-spectral tokens. These tokens are then processed through morphological operations such as erosion and dilation, utilizing depthwise separable convolutions to capture structural and shape information. A token enhancement module refines these features by dynamically adjusting the spatial and spectral tokens based on central HSI regions, ensuring effective feature fusion within each block. Subsequently, multi-head self-attention is applied to further enrich the feature representations, allowing the model to capture complex relationships and dependencies within the data. Finally, the enhanced tokens are fed into a state space module, which efficiently models the temporal evolution of the features for classification. Experimental results on widely used HSI datasets demonstrate that MorpMamba achieves superior parametric efficiency compared to traditional CNN and transformer models while maintaining high accuracy. The code will be made publicly available at \url{https://github.com/mahmad000/MorpMamba}.
- Abstract(参考訳): 近年の変圧器、特に自己注意機構の進歩は、高スペクトル画像(HSI)分類を大幅に改善した。
しかしながら、これらのモデルはしばしば非効率に悩まされる。
これらの課題に対処するために,形態的空間マンバ (SMM) と形態的空間スペクトルマンバ (SSMM) モデル (MorpMamba) を提案する。
MorpMambaでは、新しいトークン生成モジュールが最初にHSIパッチを空間分光トークンに変換する。
これらのトークンは、浸食や希釈などの形態操作によって処理され、深く分離可能な畳み込みを利用して構造情報や形状情報をキャプチャする。
トークン拡張モジュールは、中央HSI領域に基づいて空間トークンとスペクトルトークンを動的に調整することでこれらの特徴を洗練し、各ブロック内で効果的な特徴融合を保証する。
その後、マルチヘッドの自己注意を適用して特徴表現をさらに強化し、モデルがデータ内の複雑な関係や依存関係をキャプチャできるようにする。
最後に、拡張されたトークンは状態空間モジュールに供給され、分類のための機能の時間的進化を効率的にモデル化する。
広く使われているHSIデータセットの実験結果から,MorpMambaは従来のCNNやトランスフォーマーモデルよりも優れたパラメトリック効率を実現し,高精度を維持した。
コードは \url{https://github.com/mahmad000/MorpMamba} で公開されている。
関連論文リスト
- DAMamba: Vision State Space Model with Dynamic Adaptive Scan [51.81060691414399]
状態空間モデル(SSM)は近年、コンピュータビジョンにおいて大きな注目を集めている。
スキャン順序と領域を適応的に割り当てるデータ駆動型動的適応スキャン(DAS)を提案する。
DASをベースとしたビジョンバックボーンDAMambaの提案は,現在のビジョンタスクにおけるMambaモデルよりもはるかに優れている。
論文 参考訳(メタデータ) (2025-02-18T08:12:47Z) - MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification [46.111607032455225]
本稿では,Mambaモデルに基づく新しいHSI分類モデル,MambaHSIを提案する。
具体的には,空間的マンバブロック(SpaMB)を設計し,画素レベルの画像全体の長距離相互作用をモデル化する。
スペクトルベクトルを複数のグループに分割し、異なるスペクトル群間の関係をマイニングし、スペクトル特徴を抽出するスペクトルマンバブロック(SpeMB)を提案する。
論文 参考訳(メタデータ) (2025-01-09T03:27:47Z) - STNMamba: Mamba-based Spatial-Temporal Normality Learning for Video Anomaly Detection [48.997518615379995]
ビデオ異常検出(VAD)は、インテリジェントなビデオシステムの可能性から広く研究されている。
CNNやトランスフォーマーをベースとした既存の手法の多くは、依然としてかなりの計算負荷に悩まされている。
空間的時間的正規性の学習を促進するために,STNMambaという軽量で効果的なネットワークを提案する。
論文 参考訳(メタデータ) (2024-12-28T08:49:23Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
医用画像分割のための新しいU字型アーキテクチャであるMambaClinixを提案する。
MambaClinixは、階層的なゲート畳み込みネットワークとMambaを適応的なステージワイドフレームワークに統合する。
以上の結果から,MambaClinixは低モデルの複雑さを維持しつつ高いセグメンテーション精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T07:51:14Z) - Microscopic-Mamba: Revealing the Secrets of Microscopic Images with Just 4M Parameters [12.182070604073585]
CNNは、画像のセマンティック情報を完全に活用する能力を制限して、長距離依存のモデリングに苦労する。
変換器は二次計算の複雑さによって妨げられる。
本稿では,Mambaアーキテクチャに基づくモデルを提案する。
論文 参考訳(メタデータ) (2024-09-12T10:01:33Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
本研究では,空間スペクトルSSMを用いたクロススキャンマンバ(CS-Mamba)を提案する。
実験の結果, CS-Mambaは最先端の性能を達成し, マスク付きトレーニング手法によりスムーズな特徴を再構築し, 視覚的品質を向上させることができた。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification [4.389334324926174]
本研究では、このタスクにステートスペースモデル(SSM)をデプロイする最初の試みである、HSI分類のための革新的なMamba-in-Mamba(MiM)アーキテクチャを紹介する。
MiMモデルには,1)イメージをシーケンスデータに変換する新しい集中型Mamba-Cross-Scan(MCS)機構,2)Tokenized Mamba(T-Mamba)エンコーダ,3)Weighted MCS Fusion(WMF)モジュールが含まれる。
3つの公開HSIデータセットによる実験結果から,本手法は既存のベースラインや最先端アプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-20T13:19:02Z) - Spectral-Spatial Mamba for Hyperspectral Image Classification [23.215920983979426]
スペクトル空間マンバ(SS-Mamba)は高スペクトル画像(HSI)分類に適用される。
提案されたSS-マンバは、主にスペクトル空間トークン生成モジュールと、いくつかの積層スペクトル空間マンバブロックから構成される。
広く利用されているHSIデータセットを用いた実験結果から,提案モデルが競合する結果が得られることが明らかになった。
論文 参考訳(メタデータ) (2024-04-29T03:36:05Z) - Learning Modulated Transformation in GANs [69.95217723100413]
生成逆数ネットワーク(GAN)のジェネレータに、変調変換モジュール(Modulated transformation module, MTM)と呼ばれるプラグアンドプレイモジュールを装備する。
MTMは、可変位置で畳み込み操作を適用可能な潜在符号の制御下で空間オフセットを予測する。
挑戦的なTaiChiデータセット上での人為的な生成に向けて、StyleGAN3のFIDを21.36から13.60に改善し、変調幾何変換の学習の有効性を実証した。
論文 参考訳(メタデータ) (2023-08-29T17:51:22Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition [50.064502884594376]
本研究では、モーションキャプチャー(MoCap)シーケンスを用いた人間の行動認識の問題点について検討する。
メッシュシーケンスを直接モデル化する新しい時空間メッシュ変換器(STMT)を提案する。
提案手法は,スケルトンベースモデルやポイントクラウドベースモデルと比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-31T16:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。