論文の概要: Microscopic-Mamba: Revealing the Secrets of Microscopic Images with Just 4M Parameters
- arxiv url: http://arxiv.org/abs/2409.07896v1
- Date: Thu, 12 Sep 2024 10:01:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:58:31.307683
- Title: Microscopic-Mamba: Revealing the Secrets of Microscopic Images with Just 4M Parameters
- Title(参考訳): 顕微鏡マンバ:わずか4Mパラメータで顕微鏡画像の秘密を明らかにする
- Authors: Shun Zou, Zhuo Zhang, Yi Zou, Guangwei Gao,
- Abstract要約: CNNは、画像のセマンティック情報を完全に活用する能力を制限して、長距離依存のモデリングに苦労する。
変換器は二次計算の複雑さによって妨げられる。
本稿では,Mambaアーキテクチャに基づくモデルを提案する。
- 参考スコア(独自算出の注目度): 12.182070604073585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of medical microscopic image classification (MIC), CNN-based and Transformer-based models have been extensively studied. However, CNNs struggle with modeling long-range dependencies, limiting their ability to fully utilize semantic information in images. Conversely, Transformers are hampered by the complexity of quadratic computations. To address these challenges, we propose a model based on the Mamba architecture: Microscopic-Mamba. Specifically, we designed the Partially Selected Feed-Forward Network (PSFFN) to replace the last linear layer of the Visual State Space Module (VSSM), enhancing Mamba's local feature extraction capabilities. Additionally, we introduced the Modulation Interaction Feature Aggregation (MIFA) module to effectively modulate and dynamically aggregate global and local features. We also incorporated a parallel VSSM mechanism to improve inter-channel information interaction while reducing the number of parameters. Extensive experiments have demonstrated that our method achieves state-of-the-art performance on five public datasets. Code is available at https://github.com/zs1314/Microscopic-Mamba
- Abstract(参考訳): 医用顕微鏡画像分類(MIC)の分野では、CNNベースのモデルとTransformerベースのモデルが広く研究されている。
しかし、CNNは、画像のセマンティック情報を完全に活用する能力を制限し、長距離依存のモデリングに苦慮している。
逆に、トランスフォーマーは二次計算の複雑さによって妨げられる。
これらの課題に対処するため,我々はMambaアーキテクチャに基づくモデルであるMicroscopic-Mambaを提案する。
具体的には、Visual State Space Module (VSSM)の最後の線形層を置き換えるために、部分選択フィードフォワードネットワーク(PSFFN)を設計し、Mambaの局所的特徴抽出機能を強化した。
さらに,グローバルな特徴や局所的な特徴を効果的に調整し,動的に集約するMIFAモジュールも導入した。
また,パラメータ数を減らしながらチャネル間情報通信を改善するために,並列VSSM機構を組み込んだ。
大規模な実験により,5つの公開データセットの最先端性能が得られた。
コードはhttps://github.com/zs1314/Microscopic-Mambaで入手できる。
関連論文リスト
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - HMT-UNet: A hybird Mamba-Transformer Vision UNet for Medical Image Segmentation [1.5574423250822542]
我々はHybird Transformer Vision Mamba UNet(HTM-UNet)という医療画像分割のためのU字型アーキテクチャーモデルを提案する。
我々はISIC17、ISIC18、CVC-300、CVC-ClinicDB、Kvasir、CVC-ColonDB、ETIS-Larib PolypDBパブリックデータセット、ZD-LCI-GIMプライベートデータセットに関する包括的な実験を行う。
論文 参考訳(メタデータ) (2024-08-21T02:25:14Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
局所的意図的マンバブロックは、大域的コンテキストと局所的詳細の両方を線形複雑性でキャプチャする。
このモデルは, 256x256の解像度で, ImageNet上の様々なモデルスケールでDiTの性能を上回り, 優れたスケーラビリティを示す。
ImageNet 256x256 と 512x512 の最先端拡散モデルと比較すると,最大 62% GFLOP の削減など,我々の最大のモデルには顕著な利点がある。
論文 参考訳(メタデータ) (2024-08-05T16:39:39Z) - Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification [27.04370747400184]
本稿では,まずハイパースペクトル画像パッチを空間スペクトルトークンに変換するトークン生成モジュールである空間スペクトル形態マンバ(MorpMamba)モデルを提案する。
これらのトークンはモルフォロジー演算によって処理され、奥行き分離可能な畳み込み演算を用いて構造情報と形状情報を計算する。
広く使われているHSIデータセットの実験では、MorpMambaモデルはCNNモデルとTransformerモデルの両方で(パラメトリック効率)優れていた。
論文 参考訳(メタデータ) (2024-08-02T16:28:51Z) - GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model [66.35608254724566]
状態空間モデル(SSM)は、二次的複雑性を伴う長距離依存のモデリングにおいて効果的な性能を示した。
しかし、純粋なSSMベースのモデルは、コンピュータビジョンタスクにおける安定性と最適性能の達成に関連する課題に直面している。
本稿では,コンピュータビジョンのためのSSMベースのモデルをスケールする上での課題,特に大規模モデルの不安定性と非効率性について論じる。
論文 参考訳(メタデータ) (2024-07-18T17:59:58Z) - CAMS: Convolution and Attention-Free Mamba-based Cardiac Image Segmentation [0.508267104652645]
畳み込みニューラルネットワーク(CNN)とトランスフォーマーベースの自己アテンションモデルは、医療画像セグメンテーションの標準となっている。
本稿では,CAMS-Netという,コンボリューションと自己意図のないマンバに基づくセマンティックネットワークを提案する。
我々のモデルは,CMRおよびM&Ms-2カードセグメンテーションデータセットにおける既存の最先端CNN,自己注意,およびMambaベースの手法よりも優れている。
論文 参考訳(メタデータ) (2024-06-09T13:53:05Z) - MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs [1.7648680700685022]
水中画像強調(UIE)技術は,光吸収・散乱による水中画像劣化問題に対処することを目的としている。
近年、畳み込みニューラルネットワーク(CNN)とトランスフォーマーベースの手法が広く研究されている。
MambaUIEは、グローバルおよびローカル情報を効率的に合成することができ、非常に少数のパラメータを高い精度で保持する。
論文 参考訳(メタデータ) (2024-04-22T05:12:11Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
本稿では,WSI分析のためのフレームワークMamMILを提案する。
私たちは各WSIを非指向グラフとして表現します。
マンバが1次元シーケンスしか処理できない問題に対処するために、トポロジ対応の走査機構を提案する。
論文 参考訳(メタデータ) (2024-03-08T09:02:13Z) - The Hidden Attention of Mamba Models [54.50526986788175]
Mamba層は、複数のドメインをモデリングするのに非常に効果的である効率的な選択状態空間モデル(SSM)を提供する。
このようなモデルを注意駆動モデルとみなすことができる。
この新たな視点は、トランスの自己保持層のメカニズムを経験的かつ理論的に比較することを可能にする。
論文 参考訳(メタデータ) (2024-03-03T18:58:21Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z) - VM-UNet: Vision Mamba UNet for Medical Image Segmentation [2.3876474175791302]
医用画像セグメンテーションのためのU字型アーキテクチャモデルVision Mamba UNet(VM-UNet)を提案する。
我々はISIC17,ISIC18,Synapseデータセットの総合的な実験を行い,VM-UNetが医用画像分割タスクにおいて競争力を発揮することを示す。
論文 参考訳(メタデータ) (2024-02-04T13:37:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。