論文の概要: Pre-trained Language Models Improve the Few-shot Prompt Ability of Decision Transformer
- arxiv url: http://arxiv.org/abs/2408.01402v1
- Date: Fri, 2 Aug 2024 17:25:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 12:38:29.986610
- Title: Pre-trained Language Models Improve the Few-shot Prompt Ability of Decision Transformer
- Title(参考訳): 事前学習型言語モデルによる決定変換器のFew-shot Prompt能力の向上
- Authors: Yu Yang, Pan Xu,
- Abstract要約: 決定変換器(DT)は、オフライン強化学習(RL)タスクにおいて、有望なアルゴリズムのクラスとして登場した。
本稿では,Language model-d Prompt Transformer (LPDT)を紹介し,Language model-d Prompt Transformer (LPDT)について述べる。
我々のアプローチは、事前訓練された言語モデルとRLタスクをシームレスに統合する。
- 参考スコア(独自算出の注目度): 10.338170161831496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision Transformer (DT) has emerged as a promising class of algorithms in offline reinforcement learning (RL) tasks, leveraging pre-collected datasets and Transformer's capability to model long sequences. Recent works have demonstrated that using parts of trajectories from training tasks as prompts in DT enhances its performance on unseen tasks, giving rise to Prompt-DT methods. However, collecting data from specific environments can be both costly and unsafe in many scenarios, leading to suboptimal performance and limited few-shot prompt abilities due to the data-hungry nature of Transformer-based models. Additionally, the limited datasets used in pre-training make it challenging for Prompt-DT type of methods to distinguish between various RL tasks through prompts alone. To address these challenges, we introduce the Language model-initialized Prompt Decision Transformer (LPDT), which leverages pre-trained language models for meta-RL tasks and fine-tunes the model using Low-rank Adaptation (LoRA). We further incorporate prompt regularization to effectively differentiate between tasks based on prompt feature representations. Our approach integrates pre-trained language model and RL tasks seamlessly. Extensive empirical studies demonstrate that initializing with a pre-trained language model significantly enhances the performance of Prompt-DT on unseen tasks compared to baseline methods.
- Abstract(参考訳): Decision Transformer (DT)は、オフライン強化学習(RL)タスクにおける有望なアルゴリズムのクラスとして登場し、事前にコンパイルされたデータセットと長いシーケンスをモデル化するTransformerの機能を活用している。
近年の研究では、DTのプロンプトとしてトレーニングタスクからトラジェクトリの一部を使用することで、目に見えないタスクのパフォーマンスが向上し、Prompt-DTメソッドがもたらされることが示されている。
しかし、特定の環境からデータを集めることは、多くのシナリオにおいてコストがかかり、安全ではない。
さらに、事前トレーニングで使用される限られたデータセットは、Prompt-DTタイプのメソッドがプロンプトだけで様々なRLタスクを区別することを困難にしている。
これらの課題に対処するために,メタRLタスクに事前学習された言語モデルを活用し,ローランク適応(LoRA)を用いてモデルを微調整するLanguage Model-initialized Prompt Decision Transformer (LPDT)を導入する。
我々はさらに、プロンプト特徴表現に基づくタスクを効果的に区別するために、プロンプト正規化を取り入れている。
我々のアプローチは、事前訓練された言語モデルとRLタスクをシームレスに統合する。
事前学習した言語モデルによる初期化は、ベースライン手法と比較して、目に見えないタスクにおけるPrompt-DTの性能を著しく向上させる。
関連論文リスト
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Pretraining Data Mixtures Enable Narrow Model Selection Capabilities in
Transformer Models [9.340409961107955]
トランスフォーマーモデルには、コンテキスト内学習(ICL)を実行する驚くべき能力がある
本研究は, トランスフォーマーが事前学習データ混合物間の橋渡しを効果的に行う方法について検討する。
以上の結果から,高容量シーケンスモデルの印象的なICL能力は,インダクティブバイアスよりも事前学習データ混合のカバレッジに密接に関係している可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-01T21:41:08Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
本稿では,意思決定問題における変換器の文脈内学習能力について検討する。
本稿では,変換器が最適動作を予測する教師付き事前学習法であるDPT(Decision-Pretrained Transformer)を導入,研究する。
事前学習した変換器は、オンラインと保守主義の両方をオフラインで探索することで、コンテキスト内における様々なRL問題の解決に利用できる。
論文 参考訳(メタデータ) (2023-06-26T17:58:50Z) - Prompting Decision Transformer for Few-Shot Policy Generalization [98.0914217850999]
本稿では,オフラインRLにおける少数ショット適応を実現するために,Prompt-based Decision Transformer (Prompt-DT)を提案する。
Prompt-DTは、目に見えないターゲットタスクを微調整することなく、強力な数発の学習者である。
論文 参考訳(メタデータ) (2022-06-27T17:59:17Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
インスタンスワイドのPrompt Tuning(IPT)は、入力データインスタンスからプロンプトに知識を注入する最初のプロンプト学習パラダイムである。
IPTはタスクベースのプロンプト学習法を著しく上回り、調律パラメータのわずか0.5%から1.5%で従来の微調整に匹敵する性能を達成している。
論文 参考訳(メタデータ) (2022-06-04T10:08:50Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
生成音声言語モデル(GSLM)に基づく音声処理タスクの即時チューニングパラダイムの最初の検討について報告する。
実験結果から, 学習可能なパラメータが少ない音声分類タスクにおいて, 高精度なダウンストリームモデルよりも, 即時チューニング手法が競合性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-31T03:26:55Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
各種音声タスクの事前学習モデルを評価するための新しいベンチマークであるSUPERB-SGを紹介する。
データドメインのシフトの下で、事前訓練されたモデルによって学習された表現の堅牢性をテストするために、軽量な方法論を使用します。
また,SUPERB-SGのタスク多様性とタスク監督の限定が,モデル表現の一般化性を評価する効果的な方法であることを示す。
論文 参考訳(メタデータ) (2022-03-14T04:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。