論文の概要: NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities
- arxiv url: http://arxiv.org/abs/2408.01499v1
- Date: Fri, 2 Aug 2024 18:01:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 19:49:47.550004
- Title: NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities
- Title(参考訳): NeuralFactors: 方程式の生成的モデリングのための新しい因子学習アプローチ
- Authors: Achintya Gopal,
- Abstract要約: ニューラルネットワークが因子の露出を出力し、因子が返ってくる因子分析のための、新しい機械学習ベースのアプローチであるNeuralFactorsを紹介する。
このモデルは,ログライクな性能と計算効率の観点から,従来の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of machine learning for statistical modeling (and thus, generative modeling) has grown in popularity with the proliferation of time series models, text-to-image models, and especially large language models. Fundamentally, the goal of classical factor modeling is statistical modeling of stock returns, and in this work, we explore using deep generative modeling to enhance classical factor models. Prior work has explored the use of deep generative models in order to model hundreds of stocks, leading to accurate risk forecasting and alpha portfolio construction; however, that specific model does not allow for easy factor modeling interpretation in that the factor exposures cannot be deduced. In this work, we introduce NeuralFactors, a novel machine-learning based approach to factor analysis where a neural network outputs factor exposures and factor returns, trained using the same methodology as variational autoencoders. We show that this model outperforms prior approaches both in terms of log-likelihood performance and computational efficiency. Further, we show that this method is competitive to prior work in generating realistic synthetic data, covariance estimation, risk analysis (e.g., value at risk, or VaR, of portfolios), and portfolio optimization. Finally, due to the connection to classical factor analysis, we analyze how the factors our model learns cluster together and show that the factor exposures could be used for embedding stocks.
- Abstract(参考訳): 統計モデリングにおける機械学習の利用(したがって生成モデリング)は、時系列モデル、テキスト・ツー・イメージモデル、特に大きな言語モデルの普及とともに人気が高まっている。
古典的因子モデリングのゴールは、ストックリターンの統計的モデリングであり、本研究では、古典的因子モデルを強化するために、深い生成モデルを用いて検討する。
これまでの研究では、数百の在庫をモデル化するために、詳細なリスク予測とアルファポートフォリオ構築のために、深層生成モデルの使用を検討してきたが、特定のモデルでは、因子の暴露が推論できないという容易にファクターモデリングの解釈ができない。
本研究では、ニューラルネットワークが因子の露出と因子の戻りを出力する、新しい機械学習に基づく因子分析手法であるNeuralFactorsを紹介し、変分オートエンコーダと同じ手法を用いてトレーニングする。
このモデルは,ログライクな性能と計算効率の両面において,従来の手法よりも優れていることを示す。
さらに,本手法は,現実的な合成データの生成,共分散推定,リスク分析(ポートフォリオの価値,ポートフォリオの価値,VaR),ポートフォリオ最適化において,事前の作業と競合することを示す。
最後に、古典的因子分析とのつながりから、モデルがクラスタを一緒に学習する要因を分析し、要素の露出がストックを埋め込むのに使えることを示す。
関連論文リスト
- Embedding-based statistical inference on generative models [10.948308354932639]
生成モデルの埋め込みに基づく表現に関する結果を、古典的な統計的推論設定に拡張する。
類似」の概念の基盤として視点空間を用いることは、複数のモデルレベルの推論タスクに有効であることを示す。
論文 参考訳(メタデータ) (2024-10-01T22:28:39Z) - Generative Machine Learning for Multivariate Equity Returns [0.0]
本研究では,条件付き重み付きオートエンコーダと条件付き正規化フローの有効性について検討した。
私たちが取り組んだ主な問題は、S&P 500の全てのメンバーの関節分布をモデル化すること、すなわち500次元の関節分布を学習することである。
この生成モデルは、現実的な合成データの生成、ボラティリティと相関推定、リスク分析、ポートフォリオ最適化など、金融に幅広い応用があることが示される。
論文 参考訳(メタデータ) (2023-11-21T18:41:48Z) - Model Provenance via Model DNA [23.885185988451667]
本稿では,機械学習モデルの特徴を表現した新しいモデルDNAについて紹介する。
本研究では,対象モデルの事前学習モデルであるかどうかを識別できるモデル証明同定のための効率的なフレームワークを開発する。
論文 参考訳(メタデータ) (2023-08-04T03:46:41Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。