Blockchain Economic Denial of Sustainability Attack: Exploiting Latency Optimization in Ethereum Transaction Forwarding
- URL: http://arxiv.org/abs/2408.01508v1
- Date: Fri, 2 Aug 2024 18:06:33 GMT
- Title: Blockchain Economic Denial of Sustainability Attack: Exploiting Latency Optimization in Ethereum Transaction Forwarding
- Authors: Taro Tsuchiya, Liyi Zhou, Kaihua Qin, Arthur Gervais, Nicolas Christin,
- Abstract summary: Economic Denial of Sustainability (EDoS) attack can cause financial losses in traffic costs for operators of modified nodes.
We show that an attacker can amplify network traffic at modified nodes by a factor of 3,600, and cause economic damages 13,800 times greater than the amount needed to carry out the attack.
- Score: 13.13413794919346
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Strategies related to the blockchain concept of Extractable Value (MEV/BEV), such as arbitrage, front- or back-running create an economic incentive for network nodes to reduce latency, including minimizing transaction validation time -- a core feature to secure blockchain networks. A modified node, that neglects to filter invalid transactions in the Ethereum P2P network, introduces novel attack vectors. In this work, we formalize and evaluate a Blockchain Economic Denial of Sustainability (EDoS) attack, which can cause financial losses in traffic costs for operators of modified nodes. We 1) mathematically define the attack model, 2) identify thousands of empirical instances of this similar attack in the wild, 3) empirically measure the model parameters from our two monitoring nodes, and 4) conduct attack simulations on the local network to compare its performance with existing Denial-of-Service attacks. We show that an attacker can amplify network traffic at modified nodes by a factor of 3,600, and cause economic damages 13,800 times greater than the amount needed to carry out the attack. Despite these risks, aggressive latency reduction may still be profitable enough to justify the existence of modified nodes. To assess this trade-off, we 1) simulate the transaction validation process in the local network and 2) empirically measure the latency reduction by deploying our modified node in the Ethereum testnet. We conclude with a cost-benefit analysis of skipping validation and provide mitigation strategies against this attack.
Related papers
- Securing Proof of Stake Blockchains: Leveraging Multi-Agent Reinforcement Learning for Detecting and Mitigating Malicious Nodes [0.2982610402087727]
MRL-PoS+ is a novel consensus algorithm to enhance the security of PoS blockchains.
We show that MRL-PoS+ significantly improves the attack resilience of PoS blockchains.
arXiv Detail & Related papers (2024-07-30T17:18:03Z) - Larger-scale Nakamoto-style Blockchains Don't Necessarily Offer Better Security [1.2644625435032817]
Research on Nakamoto-style consensus protocols has shown that network delays degrade the security of these protocols.
This contradicts the very foundation of blockchains, namely that decentralization improves security.
We take a closer look at how the network scale affects security of Nakamoto-style blockchains.
arXiv Detail & Related papers (2024-04-15T16:09:41Z) - Model Supply Chain Poisoning: Backdooring Pre-trained Models via Embedding Indistinguishability [61.549465258257115]
We propose a novel and severer backdoor attack, TransTroj, which enables the backdoors embedded in PTMs to efficiently transfer in the model supply chain.
Experimental results show that our method significantly outperforms SOTA task-agnostic backdoor attacks.
arXiv Detail & Related papers (2024-01-29T04:35:48Z) - LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts [15.071155232677643]
Decentralized Finance (DeFi) incidents have resulted in financial damages exceeding 3 billion US dollars.
Current detection tools face significant challenges in identifying attack activities effectively.
We propose a new direction for detecting DeFi attacks that focuses on identifying adversarial contracts.
arXiv Detail & Related papers (2024-01-14T11:39:33Z) - Cost Aware Untargeted Poisoning Attack against Graph Neural Networks, [5.660584039688214]
We propose a novel attack loss framework called the Cost Aware Poisoning Attack (CA-attack) to improve the allocation of the attack budget.
Our experiments demonstrate that the proposed CA-attack significantly enhances existing attack strategies.
arXiv Detail & Related papers (2023-12-12T10:54:02Z) - Tikuna: An Ethereum Blockchain Network Security Monitoring System [0.0]
This paper focuses on protecting the lowest level layer in the blockchain, particularly the P2P network that allows the nodes to communicate and share information.
The P2P network layer may be vulnerable to several families of attacks, such as Distributed Denial of Service (DDoS), eclipse attacks, or Sybil attacks.
We introduce Tikuna, an open-source tool for monitoring and detecting potential attacks on the blockchain P2P network, at an early stage.
arXiv Detail & Related papers (2023-10-13T15:39:50Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL) offers collaborative model training without data sharing.
FL is vulnerable to backdoor attacks, where poisoned model weights lead to compromised system integrity.
We present G$2$uardFL, a protective framework that reinterprets the identification of malicious clients as an attributed graph clustering problem.
arXiv Detail & Related papers (2023-06-08T07:15:04Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
We study a novel attack paradigm, which modifies model parameters in the deployment stage.
Considering the effectiveness and stealthiness goals, we provide a general formulation to perform the bit-flip based weight attack.
We present two cases of the general formulation with different malicious purposes, i.e., single sample attack (SSA) and triggered samples attack (TSA)
arXiv Detail & Related papers (2022-07-25T03:24:58Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z) - Online Adversarial Attacks [57.448101834579624]
We formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases.
We first rigorously analyze a deterministic variant of the online threat model.
We then propose algoname, a simple yet practical algorithm yielding a provably better competitive ratio for $k=2$ over the current best single threshold algorithm.
arXiv Detail & Related papers (2021-03-02T20:36:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.