論文の概要: Robot-Enabled Machine Learning-Based Diagnosis of Gastric Cancer Polyps Using Partial Surface Tactile Imaging
- arxiv url: http://arxiv.org/abs/2408.01554v1
- Date: Fri, 2 Aug 2024 20:01:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 19:40:03.126812
- Title: Robot-Enabled Machine Learning-Based Diagnosis of Gastric Cancer Polyps Using Partial Surface Tactile Imaging
- Title(参考訳): 部分的表面触覚イメージングによる胃癌ポリープのロボットによる機械学習診断
- Authors: Siddhartha Kapuria, Jeff Bonyun, Yash Kulkarni, Naruhiko Ikoma, Sandeep Chinchali, Farshid Alambeigi,
- Abstract要約: 我々は,最近開発したVTS(Vision-based Tactile Sensor)と,そのテクスチャ特徴を用いた腫瘍の分類のための補完的機械学習(ML)アルゴリズムの利用と評価を提案する。
従来のML手法で発生するデータ不足やバイアスの問題に対処するVTSを用いた自動データ収集の利点を実証した。
- 参考スコア(独自算出の注目度): 3.571240188979656
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, to collectively address the existing limitations on endoscopic diagnosis of Advanced Gastric Cancer (AGC) Tumors, for the first time, we propose (i) utilization and evaluation of our recently developed Vision-based Tactile Sensor (VTS), and (ii) a complementary Machine Learning (ML) algorithm for classifying tumors using their textural features. Leveraging a seven DoF robotic manipulator and unique custom-designed and additively-manufactured realistic AGC tumor phantoms, we demonstrated the advantages of automated data collection using the VTS addressing the problem of data scarcity and biases encountered in traditional ML-based approaches. Our synthetic-data-trained ML model was successfully evaluated and compared with traditional ML models utilizing various statistical metrics even under mixed morphological characteristics and partial sensor contact.
- Abstract(参考訳): 本稿では, 進行胃癌(AGC)の内視鏡診断における既存の限界に対処するために, はじめて提案する。
(i)最近開発されたビジョンベース触覚センサ(VTS)の利用と評価
(II) テクスチャ特徴を用いた腫瘍の分類のための補完的機械学習(ML)アルゴリズム。
7台のDoFロボットマニピュレータと、独自に設計され、追加で製造された現実的なAGC腫瘍ファントムを活用し、従来のMLベースのアプローチで発生するデータ不足とバイアスの問題に対処するVTSを用いた自動データ収集の利点を実証した。
合成データ学習型MLモデルは, 各種統計指標を用いた従来のMLモデルと比較して, 混合形態特性および部分センサ接触下においても評価し, 比較した。
関連論文リスト
- Towards a Comprehensive Benchmark for Pathological Lymph Node Metastasis in Breast Cancer Sections [21.75452517154339]
我々は1,399枚のスライド画像(WSI)と、Camelyon-16とCamelyon-17データセットのラベルを再処理した。
再発腫瘍領域の大きさから,2重複癌検診を4段階に改善した。
論文 参考訳(メタデータ) (2024-11-16T09:19:24Z) - Synthetic Generation of Dermatoscopic Images with GAN and Closed-Form Factorization [12.753792457271953]
本稿では,GAN(Generative Adversarial Network)ベースのモデルを活用する,革新的な教師なし拡張ソリューションを提案する。
セマンティックなバリエーションを取り入れた合成画像を作成し、これらの画像でトレーニングデータを拡張した。
皮膚病変分類において,機械学習モデルの性能を向上し,非アンサンブルモデルに新しいベンチマークを設定できた。
論文 参考訳(メタデータ) (2024-10-07T15:09:50Z) - A novel method to compute the contact surface area between an organ and cancer tissue [81.84413479369512]
CSA(contact surface area)とは、腫瘍と臓器の間の接触領域のこと。
我々は,腫瘍と臓器の3次元再構成を頼りに,CSAの正確な客観的評価を行う革新的な方法を提案する。
論文 参考訳(メタデータ) (2024-01-19T14:34:34Z) - LLM-driven Multimodal Target Volume Contouring in Radiation Oncology [46.23891509553877]
大規模言語モデル(LLM)は、テキスト情報と画像の統合を容易にする。
LLM駆動型マルチモーダルAI,すなわちLLMSegを提案する。
提案モデルでは,従来のユニモーダルAIモデルと比較して,性能が著しく向上していることが実証された。
論文 参考訳(メタデータ) (2023-11-03T13:38:42Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
本稿では,領域制約として臨床専門知識をシームレスに統合する革新的プロジェクションに基づく手法を提案する。
我々は、患者データの健全な範囲を規定する制約から補正されたデータの距離を測定する。
AUROCは0.865で、精度は0.922で、従来のMLモデルを上回る。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
ダイナミックコントラストCT(Dynamic contrast Computed Tomography)のための完全自動多段階肝腫瘍評価フレームワークを提案する。
本システムでは, 腫瘍提案検出, 腫瘍採取, 原発部位の選択, 深部テクスチャに基づく腫瘍評価の4段階からなる。
論文 参考訳(メタデータ) (2020-06-28T19:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。