論文の概要: Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference
- arxiv url: http://arxiv.org/abs/2408.01582v1
- Date: Fri, 2 Aug 2024 21:35:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-06 19:30:18.816576
- Title: Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference
- Title(参考訳): 個別処理効果推定と推定のための等角拡散モデル
- Authors: Hengrui Cai, Huaqing Jin, Lexin Li,
- Abstract要約: 個々の治療効果は、個々のレベルで最もきめ細かい治療効果を提供する。
本稿では,これらの複雑な課題に対処する共形拡散モデルに基づく新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 6.406853903837333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating treatment effects from observational data is of central interest across numerous application domains. Individual treatment effect offers the most granular measure of treatment effect on an individual level, and is the most useful to facilitate personalized care. However, its estimation and inference remain underdeveloped due to several challenges. In this article, we propose a novel conformal diffusion model-based approach that addresses those intricate challenges. We integrate the highly flexible diffusion modeling, the model-free statistical inference paradigm of conformal inference, along with propensity score and covariate local approximation that tackle distributional shifts. We unbiasedly estimate the distributions of potential outcomes for individual treatment effect, construct an informative confidence interval, and establish rigorous theoretical guarantees. We demonstrate the competitive performance of the proposed method over existing solutions through extensive numerical studies.
- Abstract(参考訳): 観察データから治療効果を推定することは、多くのアプリケーション領域において中心的な関心事である。
個々の治療効果は、個々のレベルで最もきめ細かい治療効果を示し、パーソナライズされたケアを促進するのに最も有用である。
しかし、いくつかの問題により、その推定と推測は未発達のままである。
本稿では、これらの複雑な課題に対処する新しい共形拡散モデルに基づくアプローチを提案する。
我々は,共形推論のモデルフリーな統計的推論パラダイムである高フレキシブルな拡散モデルと,分布シフトに対処する確率スコアと共変局所近似を統合した。
我々は、個々の治療効果の潜在的な結果の分布を不偏に見積もり、情報的信頼区間を構築し、厳密な理論的保証を確立する。
提案手法の既存解に対する競合性能を,広範囲な数値研究により実証した。
関連論文リスト
- A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation [55.53426007439564]
観察データから個別化された治療効果を推定することは因果推論における中心的な課題である。
逆確率重み付け(IPW)は、この問題に対するよく確立された解決策であるが、現代のディープラーニングフレームワークへの統合は依然として限られている。
本稿では,拡散モデルの事前学習と重み付きスコア蒸留を組み合わせた新しい生成フレームワークであるIWDDを提案する。
論文 参考訳(メタデータ) (2025-05-16T17:00:52Z) - Federated Causal Inference in Healthcare: Methods, Challenges, and Applications [21.843379449376172]
フェデレート因果推論は、個々のレベルのデータを共有せずにマルチサイト処理効果の推定を可能にする。
本稿では, 連立因果効果評価の包括的検討と理論的解析を行い, 連立因果効果と連立因果効果の関係について考察する。
我々は、分散医療システムにおける、スケーラブルで公正で信頼性の高い連合因果推論の機会、課題、今後の方向性を概説して結論付けます。
論文 参考訳(メタデータ) (2025-05-04T20:30:11Z) - Conformal Counterfactual Inference under Hidden Confounding [19.190396053530417]
反ファクトの世界における潜在的な結果の予測と不確実性は、因果推論における因果的問題を引き起こす。
反事実に対する信頼区間を構成する既存の方法は、強い無知の仮定に依存する。
提案手法は, 限界収束保証付き実測結果に対する信頼区間を提供するトランスダクティブ重み付き共形予測に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-20T21:43:43Z) - Flexible Nonparametric Inference for Causal Effects under the Front-Door Model [2.6900047294457683]
本研究では, 平均治療効果, 平均治療効果の両面から, 新規な1段階, 目標最小損失ベース推定装置を開発した。
我々の推定器は観測されたデータ分布のパラメータ化に基づいて構築され、メディエータ密度を完全に回避するアプローチを含む。
因果効果推定器の効率を向上させるためにこれらの制約をどのように活用できるかを示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Counterfactual Generative Models for Time-Varying Treatments [15.208067770012283]
公衆衛生・臨床科学における意思決定には, 治療の非現実的な結果の推定が不可欠である。
そこで本研究では, 時間変化処理下で, 反実例を生成できる新しい条件生成フレームワークを提案する。
合成データと実世界のデータの両方を用いて,本手法の徹底的な評価を行う。
論文 参考訳(メタデータ) (2023-05-25T05:45:53Z) - Causal Inference under Data Restrictions [0.0]
この論文は、不確実性とデータ制限の下での現代の因果推論に焦点を当てている。
これには、ネオアジュバント臨床試験、分散データネットワーク、堅牢な個別化意思決定へのアプリケーションが含まれる。
論文 参考訳(メタデータ) (2023-01-20T20:14:32Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
個別多面的治療の観点からの時間的対実予測の包括的枠組み(TCFimt)を提案する。
TCFimtは、選択と時間変化バイアスを軽減するためにSeq2seqフレームワークの逆タスクを構築し、比較学習ベースのブロックを設計し、混合処理効果を分離した主治療効果と因果相互作用に分解する。
提案手法は, 特定の治療法による今後の結果予測と, 最先端手法よりも最適な治療タイプとタイミングを選択する上で, 良好な性能を示す。
論文 参考訳(メタデータ) (2022-12-17T15:01:05Z) - Distributionally Robust Causal Inference with Observational Data [4.8986598953553555]
非確立性の標準的な仮定を伴わない観察研究における平均治療効果の推定を考察する。
本稿では,無観測の共同設立者が存在する可能性を考慮した,一般的な観察研究環境下での堅牢な因果推論の枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-15T16:02:33Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
我々は,連続的評価介入の効果を推定する問題に対処するため,GAN(Generative Adversarial Network)フレームワークを構築した。
我々のモデルであるSCIGANは柔軟であり、いくつかの異なる継続的な介入に対する対実的な結果の同時推定が可能である。
継続的な介入に移行することによって生じる課題に対処するために、差別者のための新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-27T18:46:21Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z) - Nonparametric inference for interventional effects with multiple
mediators [0.0]
より柔軟で、おそらく機械学習に基づく推定技術を可能にする理論を提供する。
提案した推定器の複数のロバスト性特性を示す。
本研究は, 介入媒介効果の推定において, 最新の統計的学習手法を活用する手段を提供する。
論文 参考訳(メタデータ) (2020-01-16T19:05:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。