Transforming Slot Schema Induction with Generative Dialogue State Inference
- URL: http://arxiv.org/abs/2408.01638v1
- Date: Sat, 3 Aug 2024 02:41:10 GMT
- Title: Transforming Slot Schema Induction with Generative Dialogue State Inference
- Authors: James D. Finch, Boxin Zhao, Jinho D. Choi,
- Abstract summary: Slot Induction (SSI) aims to automatically induce slots from unlabeled dialogue data.
Our SSI method discovers high-quality candidate information for representing dialogue state.
Experimental comparisons on the MultiWOZ and SGD datasets demonstrate that Generative Dialogue State Inference (GenDSI) outperforms the previous state-of-the-art.
- Score: 14.06505399101404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenge of defining a slot schema to represent the state of a task-oriented dialogue system is addressed by Slot Schema Induction (SSI), which aims to automatically induce slots from unlabeled dialogue data. Whereas previous approaches induce slots by clustering value spans extracted directly from the dialogue text, we demonstrate the power of discovering slots using a generative approach. By training a model to generate slot names and values that summarize key dialogue information with no prior task knowledge, our SSI method discovers high-quality candidate information for representing dialogue state. These discovered slot-value candidates can be easily clustered into unified slot schemas that align well with human-authored schemas. Experimental comparisons on the MultiWOZ and SGD datasets demonstrate that Generative Dialogue State Inference (GenDSI) outperforms the previous state-of-the-art on multiple aspects of the SSI task.
Related papers
- DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUS is a pre-trained encoder-decoder model for summarizing dialogues in any new domain.
Our experiments show that DIONYSUS outperforms existing methods on six datasets.
arXiv Detail & Related papers (2022-12-20T06:21:21Z) - Enhancing Task Bot Engagement with Synthesized Open-Domain Dialog [89.35658776144638]
It is essential to build a system that can handle both TOD and ODD and access different knowledge sources.
We propose a framework for automatically generating dialogues that combine knowledge-grounded ODDs and TODs in various settings.
We introduce a unified model PivotBot that is capable of appropriately adopting TOD and ODD modes and accessing different knowledge sources.
arXiv Detail & Related papers (2022-12-20T05:51:47Z) - DiSTRICT: Dialogue State Tracking with Retriever Driven In-Context
Tuning [7.5700317050237365]
We propose DiSTRICT, a generalizable in-context tuning approach for Dialogue State Tracking (DST)
DSTRICT retrieves highly relevant training examples for a given dialogue to fine-tune the model without any hand-crafted templates.
Experiments with the MultiWOZ benchmark datasets show that DiSTRICT outperforms existing approaches in various zero-shot and few-shot settings.
arXiv Detail & Related papers (2022-12-06T09:40:15Z) - Structure Extraction in Task-Oriented Dialogues with Slot Clustering [94.27806592467537]
In task-oriented dialogues, dialogue structure has often been considered as transition graphs among dialogue states.
We propose a simple yet effective approach for structure extraction in task-oriented dialogues.
arXiv Detail & Related papers (2022-02-28T20:18:12Z) - A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog
Act Detection [6.361198391681688]
CaBERT-SLU is a context-aware hierarchical BERT fusion Network (CaBERT-SLU)
Our approach reaches new state-of-the-art (SOTA) performances in two complicated multi-turn dialogue datasets.
arXiv Detail & Related papers (2021-09-03T02:00:03Z) - Novel Slot Detection: A Benchmark for Discovering Unknown Slot Types in
the Task-Oriented Dialogue System [17.45841883192018]
We introduce a new task, Novel Slot Detection (NSD), in the task-oriented dialogue system.
NSD aims to discover unknown or out-of-domain slot types to strengthen the capability of a dialogue system based on in-domain training data.
We construct two public NSD datasets, propose several strong NSD baselines, and establish a benchmark for future work.
arXiv Detail & Related papers (2021-05-29T14:46:38Z) - Leveraging Slot Descriptions for Zero-Shot Cross-Domain Dialogue State
Tracking [50.04597636485369]
Zero-shot cross-domain dialogue state tracking (DST) enables us to handle task-oriented dialogue in unseen domains without the expense of collecting in-domain data.
We propose a slot description enhanced generative approach for zero-shot cross-domain DST.
arXiv Detail & Related papers (2021-05-10T09:34:01Z) - Slot Self-Attentive Dialogue State Tracking [22.187581131353948]
We propose a slot self-attention mechanism that can learn the slot correlations automatically.
We conduct comprehensive experiments on two multi-domain task-oriented dialogue datasets.
arXiv Detail & Related papers (2021-01-22T22:48:51Z) - Discovering Dialog Structure Graph for Open-Domain Dialog Generation [51.29286279366361]
We conduct unsupervised discovery of dialog structure from chitchat corpora.
We then leverage it to facilitate dialog generation in downstream systems.
We present a Discrete Variational Auto-Encoder with Graph Neural Network (DVAE-GNN), to discover a unified human-readable dialog structure.
arXiv Detail & Related papers (2020-12-31T10:58:37Z) - A Sequence-to-Sequence Approach to Dialogue State Tracking [17.81139775400199]
Seq2Seq-DU formalizes dialogue state tracking as a sequence-to-sequence problem.
It can jointly model intents, slots, and slot values.
It can effectively deal with categorical and non-categorical slots, and unseen schemas.
arXiv Detail & Related papers (2020-11-18T21:42:44Z) - Non-Autoregressive Dialog State Tracking [122.2328875457225]
We propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST)
NADST can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots.
Our results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus.
arXiv Detail & Related papers (2020-02-19T06:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.