MCPDepth: Omnidirectional Depth Estimation via Stereo Matching from Multi-Cylindrical Panoramas
- URL: http://arxiv.org/abs/2408.01653v1
- Date: Sat, 3 Aug 2024 03:35:37 GMT
- Title: MCPDepth: Omnidirectional Depth Estimation via Stereo Matching from Multi-Cylindrical Panoramas
- Authors: Feng Qiao, Zhexiao Xiong, Xinge Zhu, Yuexin Ma, Qiumeng He, Nathan Jacobs,
- Abstract summary: Multi-Cylindrical Panoramic Depth Estimation (MCPDepth)
State-of-the-art performance with an 18.8% reduction in mean absolute error (MAE) for depth on the outdoor synthetic dataset Deep360.
A 19.9% reduction on the indoor real-scene dataset 3D60.
- Score: 26.686883000660437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Multi-Cylindrical Panoramic Depth Estimation (MCPDepth), a two-stage framework for omnidirectional depth estimation via stereo matching between multiple cylindrical panoramas. MCPDepth uses cylindrical panoramas for initial stereo matching and then fuses the resulting depth maps across views. A circular attention module is employed to overcome the distortion along the vertical axis. MCPDepth exclusively utilizes standard network components, simplifying deployment to embedded devices and outperforming previous methods that require custom kernels. We theoretically and experimentally compare spherical and cylindrical projections for stereo matching, highlighting the advantages of the cylindrical projection. MCPDepth achieves state-of-the-art performance with an 18.8% reduction in mean absolute error (MAE) for depth on the outdoor synthetic dataset Deep360 and a 19.9% reduction on the indoor real-scene dataset 3D60.
Related papers
- Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model [62.37493746544967]
Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps.
Existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments.
We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation.
arXiv Detail & Related papers (2025-03-30T16:24:22Z) - Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation [83.841877607646]
We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation.
The dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images.
We benchmark leading stereo depth estimation models for both standard and omnidirectional images.
arXiv Detail & Related papers (2024-11-27T13:34:41Z) - Adaptive Stereo Depth Estimation with Multi-Spectral Images Across All Lighting Conditions [58.88917836512819]
We propose a novel framework incorporating stereo depth estimation to enforce accurate geometric constraints.
To mitigate the effects of poor lighting on stereo matching, we introduce Degradation Masking.
Our method achieves state-of-the-art (SOTA) performance on the Multi-Spectral Stereo (MS2) dataset.
arXiv Detail & Related papers (2024-11-06T03:30:46Z) - Robust and Flexible Omnidirectional Depth Estimation with Multiple 360° Cameras [8.850391039025077]
We use geometric constraints and redundant information of multiple 360-degree cameras to achieve robust and flexible omnidirectional depth estimation.
Our two algorithms achieve state-of-the-art performance, accurately predicting depth maps even when provided with soiled panorama inputs.
arXiv Detail & Related papers (2024-09-23T07:31:48Z) - Stereo-Depth Fusion through Virtual Pattern Projection [37.519762078762575]
This paper presents a novel general-purpose stereo and depth data fusion paradigm.
It mimics the active stereo principle by replacing the unreliable physical pattern projector with a depth sensor.
It works by projecting virtual patterns consistent with the scene geometry onto the left and right images acquired by a conventional stereo camera.
arXiv Detail & Related papers (2024-06-06T17:59:58Z) - ARAI-MVSNet: A multi-view stereo depth estimation network with adaptive
depth range and depth interval [19.28042366225802]
Multi-View Stereo(MVS) is a fundamental problem in geometric computer vision.
We present a novel multi-stage coarse-to-fine framework to achieve adaptive all-pixel depth range and depth interval.
Our model achieves state-of-the-art performance and yields competitive generalization ability.
arXiv Detail & Related papers (2023-08-17T14:52:11Z) - DSGN++: Exploiting Visual-Spatial Relation forStereo-based 3D Detectors [60.88824519770208]
Camera-based 3D object detectors are welcome due to their wider deployment and lower price than LiDAR sensors.
We revisit the prior stereo modeling DSGN about the stereo volume constructions for representing both 3D geometry and semantics.
We propose our approach, DSGN++, aiming for improving information flow throughout the 2D-to-3D pipeline.
arXiv Detail & Related papers (2022-04-06T18:43:54Z) - PanoDepth: A Two-Stage Approach for Monocular Omnidirectional Depth
Estimation [11.66493799838823]
We propose a novel, model-agnostic, two-stage pipeline for omnidirectional monocular depth estimation.
Our framework PanoDepth takes one 360 image as input, produces one or more synthesized views in the first stage, and feeds the original image and the synthesized images into the subsequent stereo matching stage.
Our results show that PanoDepth outperforms the state-of-the-art approaches by a large margin for 360 monocular depth estimation.
arXiv Detail & Related papers (2022-02-02T23:08:06Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Distortion-aware Monocular Depth Estimation for Omnidirectional Images [26.027353545874522]
We propose a Distortion-Aware Monocular Omnidirectional (DAMO) dense depth estimation network to address this challenge on indoor panoramas.
First, we introduce a distortion-aware module to extract calibrated semantic features from omnidirectional images.
Second, we introduce a plug-and-play spherical-aware weight matrix for our objective function to handle the uneven distribution of areas projected from a sphere.
arXiv Detail & Related papers (2020-10-18T08:47:57Z) - OmniSLAM: Omnidirectional Localization and Dense Mapping for
Wide-baseline Multi-camera Systems [88.41004332322788]
We present an omnidirectional localization and dense mapping system for a wide-baseline multiview stereo setup with ultra-wide field-of-view (FOV) fisheye cameras.
For more practical and accurate reconstruction, we first introduce improved and light-weighted deep neural networks for the omnidirectional depth estimation.
We integrate our omnidirectional depth estimates into the visual odometry (VO) and add a loop closing module for global consistency.
arXiv Detail & Related papers (2020-03-18T05:52:10Z) - D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual
Odometry [57.5549733585324]
D3VO is a novel framework for monocular visual odometry that exploits deep networks on three levels -- deep depth, pose and uncertainty estimation.
We first propose a novel self-supervised monocular depth estimation network trained on stereo videos without any external supervision.
We model the photometric uncertainties of pixels on the input images, which improves the depth estimation accuracy.
arXiv Detail & Related papers (2020-03-02T17:47:13Z) - Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset
for Spatially Varying Isotropic Materials [65.95928593628128]
We present a method to capture both 3D shape and spatially varying reflectance with a multi-view photometric stereo technique.
Our algorithm is suitable for perspective cameras and nearby point light sources.
arXiv Detail & Related papers (2020-01-18T12:26:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.