Deep Reinforcement Learning for Dynamic Order Picking in Warehouse Operations
- URL: http://arxiv.org/abs/2408.01656v1
- Date: Sat, 3 Aug 2024 03:56:46 GMT
- Title: Deep Reinforcement Learning for Dynamic Order Picking in Warehouse Operations
- Authors: Sasan Mahmoudinazlou, Abhay Sobhanan, Hadi Charkhgard, Ali Eshragh, George Dunn,
- Abstract summary: This study addresses the dynamic order picking problem.
Traditional methods, often assuming fixed order sets, fall short in this dynamic environment.
We utilize Deep Reinforcement Learning (DRL) as a solution methodology to handle the inherent uncertainties in customer demands.
- Score: 0.6116681488656472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Order picking is a crucial operation in warehouses that significantly impacts overall efficiency and profitability. This study addresses the dynamic order picking problem, a significant concern in modern warehouse management where real-time adaptation to fluctuating order arrivals and efficient picker routing are crucial. Traditional methods, often assuming fixed order sets, fall short in this dynamic environment. We utilize Deep Reinforcement Learning (DRL) as a solution methodology to handle the inherent uncertainties in customer demands. We focus on a single-block warehouse with an autonomous picking device, eliminating human behavioral factors. Our DRL framework enables the dynamic optimization of picker routes, significantly reducing order throughput times, especially under high order arrival rates. Experiments demonstrate a substantial decrease in order throughput time and unfulfilled orders compared to benchmark algorithms. We further investigate integrating a hyperparameter in the reward function that allows for flexible balancing between distance traveled and order completion time. Finally, we demonstrate the robustness of our DRL model for out-of-sample test instances.
Related papers
- Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization [6.713974813995327]
We present MEMENTO, an approach that leverages memory to improve the adaptation of neural solvers at time.
We successfully train all RL auto-regressive solvers on large instances, and show that MEMENTO can scale and is data-efficient.
Overall, MEMENTO enables to push the state-of-the-art on 11 out of 12 evaluated tasks.
arXiv Detail & Related papers (2024-06-24T08:18:19Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Fractional Deep Reinforcement Learning for Age-Minimal Mobile Edge
Computing [11.403989519949173]
This work focuses on the timeliness of computational-intensive updates, measured by Age-ofInformation (AoI)
We study how to jointly optimize the task updating and offloading policies for AoI with fractional form.
Experimental results show that our proposed algorithms reduce the average AoI by up to 57.6% compared with several non-fractional benchmarks.
arXiv Detail & Related papers (2023-12-16T11:13:40Z) - Neural Approximate Dynamic Programming for the Ultra-fast Order
Dispatching Problem [1.519321208145928]
We focus on the ultrafast Order Dispatch Problem (ODP), which involves matching and dispatching orders to couriers within a centralized warehouse setting.
We introduce important extensions to ultra-fast ODP such as order policies and explicit courier assignments to provide a more realistic representation of operations and improve delivery efficiency.
We test our proposed approach using four distinct realistic datasets tailored for ODP and compare the performance of NeurADP against myopic and DRL baselines.
arXiv Detail & Related papers (2023-11-21T20:23:58Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - AdaPool: A Diurnal-Adaptive Fleet Management Framework using Model-Free
Deep Reinforcement Learning and Change Point Detection [34.77250498401055]
This paper introduces an adaptive model-free deep reinforcement approach that can recognize and adapt to the diurnal patterns in the ride-sharing environment with car-pooling.
In addition to the adaptation logic in dispatching, this paper also proposes a dynamic, demand-aware vehicle-passenger matching and route planning framework.
arXiv Detail & Related papers (2021-04-01T02:14:01Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z) - Solving the Order Batching and Sequencing Problem using Deep
Reinforcement Learning [2.4565068569913384]
We present a Deep Reinforcement Learning (DRL) approach for deciding how and when orders should be batched and picked in a warehouse to minimize the number of tardy orders.
In particular, the technique facilitates making decisions on whether an order should be picked individually (pick-by-order) or picked in a batch with other orders (pick-by-batch) and if so with which other orders.
arXiv Detail & Related papers (2020-06-16T20:40:41Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
Online algorithms are popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches.
When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy.
We establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models.
arXiv Detail & Related papers (2020-04-04T14:16:27Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.