論文の概要: Mitigating the Impact of Malware Evolution on API Sequence-based Windows Malware Detector
- arxiv url: http://arxiv.org/abs/2408.01661v1
- Date: Sat, 3 Aug 2024 04:21:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 19:10:37.584964
- Title: Mitigating the Impact of Malware Evolution on API Sequence-based Windows Malware Detector
- Title(参考訳): APIシーケンスベースのWindowsマルウェア検出器におけるマルウェア進化の影響について
- Authors: Xingyuan Wei, Ce Li, Qiujian Lv, Ning Li, Degang Sun, Yan Wang,
- Abstract要約: APIシーケンスに基づく手法は、マルウェア予防において重要な役割を果たす。
進化したマルウェアサンプルは、しばしば、進化前のサンプルのAPIシーケンスを使用して、同様の悪意のある振る舞いを達成する。
本稿では,既存のAPIシーケンスに基づくマルウェア検出機能を拡張可能なフレーム(MME)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.953199557879621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In dynamic Windows malware detection, deep learning models are extensively deployed to analyze API sequences. Methods based on API sequences play a crucial role in malware prevention. However, due to the continuous updates of APIs and the changes in API sequence calls leading to the constant evolution of malware variants, the detection capability of API sequence-based malware detection models significantly diminishes over time. We observe that the API sequences of malware samples before and after evolution usually have similar malicious semantics. Specifically, compared to the original samples, evolved malware samples often use the API sequences of the pre-evolution samples to achieve similar malicious behaviors. For instance, they access similar sensitive system resources and extend new malicious functions based on the original functionalities. In this paper, we propose a frame(MME), a framework that can enhance existing API sequence-based malware detectors and mitigate the adverse effects of malware evolution. To help detection models capture the similar semantics of these post-evolution API sequences, our framework represents API sequences using API knowledge graphs and system resource encodings and applies contrastive learning to enhance the model's encoder. Results indicate that, compared to Regular Text-CNN, our framework can significantly reduce the false positive rate by 13.10% and improve the F1-Score by 8.47% on five years of data, achieving the best experimental results. Additionally, evaluations show that our framework can save on the human costs required for model maintenance. We only need 1% of the budget per month to reduce the false positive rate by 11.16% and improve the F1-Score by 6.44%.
- Abstract(参考訳): 動的Windowsマルウェア検出では、ディープラーニングモデルはAPIシーケンスを分析するために広範囲にデプロイされる。
APIシーケンスに基づく手法は、マルウェア予防において重要な役割を果たす。
しかし、APIの継続的な更新とAPIシークエンスコールの変更により、マルウェアの変種が絶え間なく進化していくため、APIシークエンスベースのマルウェア検出モデルの検出能力は時間とともに大幅に低下する。
進化前後のマルウェアサンプルのAPIシーケンスは、通常、同様の悪意のあるセマンティクスを持つ。
具体的には、元のサンプルと比較して、進化したマルウェアサンプルは、しばしば、進化前のサンプルのAPIシーケンスを使用して、同様の悪意のある振る舞いを達成する。
例えば、同様の機密システムリソースにアクセスし、元の機能に基づいた新しい悪意のある機能を拡張する。
本稿では,既存のAPIシーケンスベースのマルウェア検出機能を強化し,マルウェア進化の悪影響を軽減するフレームワークであるフレーム(MME)を提案する。
このフレームワークは,API知識グラフとシステムリソースエンコーディングを用いて,これらの進化後のAPIシーケンスの類似したセマンティクスを抽出し,モデルエンコーダを強化するためにコントラスト学習を適用する。
その結果、通常のテキストCNNと比較して、我々のフレームワークは偽陽性率を13.10%、F1スコアを8.47%改善し、最良の実験結果が得られることがわかった。
さらに,モデル保守に必要な人的コストを削減できることを示す。
偽陽性率を11.16%削減し、F1スコアを6.44%改善するために、月に1%の予算しか必要としない。
関連論文リスト
- EarlyMalDetect: A Novel Approach for Early Windows Malware Detection Based on Sequences of API Calls [0.7373617024876725]
API呼び出しのシーケンスに基づく早期Windowsマルウェア検出のための新しいアプローチであるEarlyMalDetectを提案する。
EarlyMalDetectは、マルウェアプログラムがターゲットシステムで実行される前に予測し、公開することができる。
大規模な実験により,本手法はマルウェアの挙動を予測するのに極めて有効であることが示された。
論文 参考訳(メタデータ) (2024-07-18T09:54:33Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - Prompt Engineering-assisted Malware Dynamic Analysis Using GPT-4 [45.935748395725206]
GPT-4を用いた即時エンジニアリング支援型マルウェア動的解析手法を提案する。
この方法では、APIシーケンス内の各API呼び出しに対する説明テキストを作成するために、GPT-4が使用される。
BERTはテキストの表現を得るために使われ、そこからAPIシーケンスの表現を導出します。
論文 参考訳(メタデータ) (2023-12-13T17:39:44Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Behavioural Reports of Multi-Stage Malware [3.64414368529873]
このデータセットは、Windows 10仮想マシンで実行される数千のマルウェアサンプルに対するAPI呼び出しシーケンスを提供する。
このデータセットの作成と拡張のチュートリアルと、このデータセットを使用してマルウェアを分類する方法を示すベンチマークが提供されている。
論文 参考訳(メタデータ) (2023-01-30T11:51:02Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
一般的な評価フレームワークを用いて,Androidのマルウェア検出に関する10の研究成果を分析した。
データセットの作成やデザイナの設計に考慮しない場合、トレーニングされたMLモデルに大きく影響する5つの要因を特定します。
その結果,MLに基づく検出器は楽観的に評価され,良好な結果が得られた。
論文 参考訳(メタデータ) (2022-05-25T08:28:08Z) - Fast & Furious: Modelling Malware Detection as Evolving Data Streams [6.6892028759947175]
マルウェアはコンピュータシステムにとって大きな脅威であり、サイバーセキュリティに多くの課題を課している。
本研究では,2つのAndroidデータセットに対するマルウェア分類器に対する概念ドリフトの影響を評価する。
論文 参考訳(メタデータ) (2022-05-24T18:43:40Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
インテント分類は、音声言語理解(SLU)における主要な課題である
近年の研究では、余分なデータやラベルを使用することで、OOD検出性能が向上することが示されている。
本稿では、IND意図分類とOOD検出の両方をサポートしながら、INDデータのみを用いてモデルを訓練することを提案する。
論文 参考訳(メタデータ) (2021-06-28T08:27:38Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA(Adversarial Malware Detection)モデルであるMDEAは、進化的最適化を使用して攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルを再トレーニングすることで、その性能は大幅に改善される。
論文 参考訳(メタデータ) (2020-02-09T09:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。