論文の概要: Multiple Contexts and Frequencies Aggregation Network forDeepfake Detection
- arxiv url: http://arxiv.org/abs/2408.01668v1
- Date: Sat, 3 Aug 2024 05:34:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 19:00:53.315675
- Title: Multiple Contexts and Frequencies Aggregation Network forDeepfake Detection
- Title(参考訳): ディープフェイク検出のための複数コンテキストと周波数集約ネットワーク
- Authors: Zifeng Li, Wenzhong Tang, Shijun Gao, Shuai Wang, Yanxiang Wang,
- Abstract要約: ディープフェイク検出は、大量で多様なディープフェイク技術の開発において、生成モデルの急速な成長以来、課題に直面している。
近年の進歩は、バックボーン内の一般的な偽造特徴をモデル化するのではなく、空間領域や周波数領域からの特徴の導入に依存している。
2つのコアモジュールからなるMkfaNetという顔偽造検出のための効率的なネットワークを提案する。
- 参考スコア(独自算出の注目度): 5.65128683992597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deepfake detection faces increasing challenges since the fast growth of generative models in developing massive and diverse Deepfake technologies. Recent advances rely on introducing heuristic features from spatial or frequency domains rather than modeling general forgery features within backbones. To address this issue, we turn to the backbone design with two intuitive priors from spatial and frequency detectors, \textit{i.e.,} learning robust spatial attributes and frequency distributions that are discriminative for real and fake samples. To this end, we propose an efficient network for face forgery detection named MkfaNet, which consists of two core modules. For spatial contexts, we design a Multi-Kernel Aggregator that adaptively selects organ features extracted by multiple convolutions for modeling subtle facial differences between real and fake faces. For the frequency components, we propose a Multi-Frequency Aggregator to process different bands of frequency components by adaptively reweighing high-frequency and low-frequency features. Comprehensive experiments on seven popular deepfake detection benchmarks demonstrate that our proposed MkfaNet variants achieve superior performances in both within-domain and across-domain evaluations with impressive efficiency of parameter usage.
- Abstract(参考訳): ディープフェイク検出は、大量で多様なディープフェイク技術の開発において、生成モデルの急速な成長以来、課題に直面している。
近年の進歩は、バックボーン内の一般的な偽造の特徴をモデル化するのではなく、空間領域や周波数領域からヒューリスティックな特徴を導入することに依存している。
この問題に対処するため、我々は空間および周波数検出器から直感的な2つの先行要素を持つバックボーン設計、すなわち、実と偽のサンプルを識別する頑健な空間特性と周波数分布を学習する。
そこで本研究では,MkfaNetという2つのコアモジュールからなる顔偽造検出ネットワークを提案する。
空間的文脈において,複数の畳み込みによって抽出される臓器の特徴を適応的に選択し,実顔と偽顔の微妙な顔差をモデル化するマルチカーネルアグリゲータを設計する。
周波数成分について,高周波・低周波特性を適応的に補正することにより,周波数成分の異なる帯域を処理する多周波アグリゲータを提案する。
提案したMkfaNet変異体はドメイン内およびドメイン間の両方で優れた性能を示し,パラメータの使用効率は著しく向上した。
関連論文リスト
- Frequency-Spatial Entanglement Learning for Camouflaged Object Detection [34.426297468968485]
既存の手法では、複雑な設計で空間的特徴の識別能力を最大化することにより、画素類似性の影響を減らそうとしている。
本稿では,周波数領域と空間領域の表現を共同で探索し,周波数空間の絡み合い学習(FSEL)手法を提案する。
我々の実験は、広く使われている3つのデータセットにおける包括的量的および質的比較を通じて、21以上の最先端手法によるFSELの優位性を実証した。
論文 参考訳(メタデータ) (2024-09-03T07:58:47Z) - Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
本稿では,多面的操作検出と局所化に適したMoNFAPという新しいフレームワークを提案する。
このフレームワークには2つの新しいモジュールが含まれている: Forgery-aware Unified Predictor (FUP) Module と Mixture-of-Noises Module (MNM)。
論文 参考訳(メタデータ) (2024-08-05T08:35:59Z) - SFFNet: A Wavelet-Based Spatial and Frequency Domain Fusion Network for Remote Sensing Segmentation [9.22384870426709]
本稿ではSFFNet(Spatial and Frequency Domain Fusion Network)フレームワークを提案する。
第1段階は空間的手法を用いて特徴を抽出し、十分な空間的詳細と意味情報を持つ特徴を得る。
第2段階は、これらの特徴を空間領域と周波数領域の両方にマッピングする。
SFFNetはmIoUの点で優れた性能を示し、それぞれ84.80%と87.73%に達した。
論文 参考訳(メタデータ) (2024-05-03T10:47:56Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
本稿では、AFDと呼ばれる2分岐検出フレームワークにおいて、周波数情報を適応的に学習する手法を提案する。
我々は、固定周波数変換からネットワークを解放し、データおよびタスク依存の変換層でより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-03-27T14:25:52Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
現在のディープフェイク生成法では、偽画像やビデオの周波数スペクトルに識別的アーティファクトが残されている。
MD-CSDNetwork(MD-CSDNetwork)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T14:11:53Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z) - Fake Visual Content Detection Using Two-Stream Convolutional Neural
Networks [14.781702606707642]
周波数領域と空間領域の特徴を補完する2ストリーム畳み込みニューラルネットワークアーキテクチャであるTwoStreamNetを提案する。
提案手法は, 現状の偽コンテンツ検出装置に比べ, 大幅に性能が向上した。
論文 参考訳(メタデータ) (2021-01-03T18:05:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。