論文の概要: Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization
- arxiv url: http://arxiv.org/abs/2408.02306v1
- Date: Mon, 5 Aug 2024 08:35:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:06:30.554978
- Title: Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization
- Title(参考訳): 多面マニピュレーション検出と位置推定のための雑音混在型フォージェリ認識予測器
- Authors: Changtao Miao, Qi Chu, Tao Gong, Zhentao Tan, Zhenchao Jin, Wanyi Zhuang, Man Luo, Honggang Hu, Nenghai Yu,
- Abstract要約: 本稿では,多面的操作検出と局所化に適したMoNFAPという新しいフレームワークを提案する。
このフレームワークには2つの新しいモジュールが含まれている: Forgery-aware Unified Predictor (FUP) Module と Mixture-of-Noises Module (MNM)。
- 参考スコア(独自算出の注目度): 52.87635234206178
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the advancement of face manipulation technology, forgery images in multi-face scenarios are gradually becoming a more complex and realistic challenge. Despite this, detection and localization methods for such multi-face manipulations remain underdeveloped. Traditional manipulation localization methods either indirectly derive detection results from localization masks, resulting in limited detection performance, or employ a naive two-branch structure to simultaneously obtain detection and localization results, which cannot effectively benefit the localization capability due to limited interaction between two tasks. This paper proposes a new framework, namely MoNFAP, specifically tailored for multi-face manipulation detection and localization. The MoNFAP primarily introduces two novel modules: the Forgery-aware Unified Predictor (FUP) Module and the Mixture-of-Noises Module (MNM). The FUP integrates detection and localization tasks using a token learning strategy and multiple forgery-aware transformers, which facilitates the use of classification information to enhance localization capability. Besides, motivated by the crucial role of noise information in forgery detection, the MNM leverages multiple noise extractors based on the concept of the mixture of experts to enhance the general RGB features, further boosting the performance of our framework. Finally, we establish a comprehensive benchmark for multi-face detection and localization and the proposed \textit{MoNFAP} achieves significant performance. The codes will be made available.
- Abstract(参考訳): 顔操作技術の進歩により、多面シナリオにおける偽画像は徐々に複雑で現実的な課題になりつつある。
にもかかわらず、このような多面的操作の検出と位置決め手法は未開発のままである。
従来の操作局所化手法は、局所化マスクから間接的に検出結果を導出し、検出性能が制限されるか、2分岐構造を用いて検出と局所化結果の同時取得が可能であり、2つのタスク間の限られた相互作用により、ローカライズ能力を効果的に活用できない。
本稿では,多面的操作検出と局所化に適したMoNFAPという新しいフレームワークを提案する。
MoNFAPは主に2つの新しいモジュールを導入している: Forgery-aware Unified Predictor (FUP) Module と Mixture-of-Noises Module (MNM)。
FUPは、トークン学習戦略と複数のフォージェリー対応トランスフォーマーを用いた検出とローカライゼーションタスクを統合し、ローカライゼーション能力を高めるために、分類情報の利用を容易にする。
さらに,MNMでは,複数のノイズ抽出器を専門家の混在の概念に基づいて活用し,一般的なRGB機能を強化し,フレームワークの性能をさらに向上させる。
最後に,多面顔検出と局所化のための総合的なベンチマークを構築し,提案した‘textit{MoNFAP} は高い性能を実現する。
コードは利用可能になります。
関連論文リスト
- Multiple Contexts and Frequencies Aggregation Network forDeepfake Detection [5.65128683992597]
ディープフェイク検出は、大量で多様なディープフェイク技術の開発において、生成モデルの急速な成長以来、課題に直面している。
近年の進歩は、バックボーン内の一般的な偽造特徴をモデル化するのではなく、空間領域や周波数領域からの特徴の導入に依存している。
2つのコアモジュールからなるMkfaNetという顔偽造検出のための効率的なネットワークを提案する。
論文 参考訳(メタデータ) (2024-08-03T05:34:53Z) - Exploiting Facial Relationships and Feature Aggregation for Multi-Face
Forgery Detection [21.976412231332798]
既存の方法は、主に単面操作検出に集中しており、より複雑で現実的な多面フォージェリーの領域は、比較的探索されていないままである。
本稿では,多面フォージェリ検出に適した新しいフレームワークを提案し,現状の研究において重要なギャップを埋めている。
提案手法が多面フォージェリ検出シナリオにおける最先端性能を実現することを示すために,2つの公開多面フォージェリデータセットを用いた実験結果を得た。
論文 参考訳(メタデータ) (2023-10-07T15:09:18Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - Multi-spectral Class Center Network for Face Manipulation Detection and Localization [52.569170436393165]
顔の操作検出と局所化のための新しいマルチスペクトル・クラス・センター・ネットワーク(MSCCNet)を提案する。
周波数帯域の異なる特徴に基づき、MSCCモジュールはマルチスペクトルクラスセンターを収集し、ピクセル対クラス関係を計算する。
多スペクトルクラスレベルの表現を適用することで、偽画像の操作された領域に敏感な視覚概念の意味情報を抑えることができる。
論文 参考訳(メタデータ) (2023-05-18T08:09:20Z) - MSMG-Net: Multi-scale Multi-grained Supervised Metworks for Multi-task
Image Manipulation Detection and Localization [1.14219428942199]
マルチスケール多層深層ネットワーク(MSMG-Net)を提案する。
我々のMSMG-Netでは,並列なマルチスケール特徴抽出構造を用いてマルチスケール特徴抽出を行う。
MSMG-Netはオブジェクトレベルのセマンティクスを効果的に認識し、エッジアーティファクトをエンコードする。
論文 参考訳(メタデータ) (2022-11-06T14:58:21Z) - Towards Effective Image Manipulation Detection with Proposal Contrastive
Learning [61.5469708038966]
本稿では,効果的な画像操作検出のためのコントラスト学習(PCL)を提案する。
我々のPCLは、RGBとノイズビューから2種類のグローバル特徴を抽出し、2ストリームアーキテクチャで構成されている。
我々のPCLは、実際にラベル付けされていないデータに容易に適用でき、手作業によるラベル付けコストを削減し、より一般化可能な機能を促進することができる。
論文 参考訳(メタデータ) (2022-10-16T13:30:13Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
現在の物体検出器は、通常マルチレベル特徴融合(MFF)のための特徴ピラミッド(FP)モジュールを持つ。
我々は,既存のFPがより優れたMFF結果を提供するのに役立つ,新しい,効率的なコンテキストモデリング機構を提案する。
特に,包括的文脈を2種類の表現に分解・凝縮して高効率化を図っている。
論文 参考訳(メタデータ) (2022-07-14T01:45:03Z) - MC-LCR: Multi-modal contrastive classification by locally correlated
representations for effective face forgery detection [11.124150983521158]
局所的関連表現を用いたマルチモーダルコントラスト分類法を提案する。
我々のMC-LCRは、空間領域と周波数領域の両方から真偽顔と偽顔の暗黙の局所的不一致を増幅することを目的としている。
我々は最先端の性能を達成し,本手法の堅牢性と一般化を実証する。
論文 参考訳(メタデータ) (2021-10-07T09:24:12Z) - Learnable Multi-level Frequency Decomposition and Hierarchical Attention
Mechanism for Generalized Face Presentation Attack Detection [7.324459578044212]
顔提示攻撃検知(PAD)は多くの注目を集めており、顔認識システムを保護する上で重要な役割を果たしている。
両ストリーム畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
ステップワイドアブレーション研究において提案したPAD法の設計を実証した。
論文 参考訳(メタデータ) (2021-09-16T13:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。