論文の概要: Integrating Large Language Models and Knowledge Graphs for Extraction and Validation of Textual Test Data
- arxiv url: http://arxiv.org/abs/2408.01700v1
- Date: Sat, 3 Aug 2024 07:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 18:51:05.665319
- Title: Integrating Large Language Models and Knowledge Graphs for Extraction and Validation of Textual Test Data
- Title(参考訳): テキストテストデータの抽出と検証のための大規模言語モデルと知識グラフの統合
- Authors: Antonio De Santis, Marco Balduini, Federico De Santis, Andrea Proia, Arsenio Leo, Marco Brambilla, Emanuele Della Valle,
- Abstract要約: タレス・アレニア・スペース (Thales Alenia Space) のような航空宇宙製造会社は、製品の設計、開発、統合、検証、検証を行っている。
本稿では,Large Language Models (LLMs) と協調して知識グラフ(KGs)を活用してデータの抽出と検証を行うハイブリッド手法を提案する。
- 参考スコア(独自算出の注目度): 3.114910206366326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aerospace manufacturing companies, such as Thales Alenia Space, design, develop, integrate, verify, and validate products characterized by high complexity and low volume. They carefully document all phases for each product but analyses across products are challenging due to the heterogeneity and unstructured nature of the data in documents. In this paper, we propose a hybrid methodology that leverages Knowledge Graphs (KGs) in conjunction with Large Language Models (LLMs) to extract and validate data contained in these documents. We consider a case study focused on test data related to electronic boards for satellites. To do so, we extend the Semantic Sensor Network ontology. We store the metadata of the reports in a KG, while the actual test results are stored in parquet accessible via a Virtual Knowledge Graph. The validation process is managed using an LLM-based approach. We also conduct a benchmarking study to evaluate the performance of state-of-the-art LLMs in executing this task. Finally, we analyze the costs and benefits of automating preexisting processes of manual data extraction and validation for subsequent cross-report analyses.
- Abstract(参考訳): タレス・アレニア・スペース (Thales Alenia Space) のような航空宇宙製造会社は、高い複雑さと低い体積で特徴付けられる製品の設計、開発、統合、検証を行っている。
それぞれの製品に関するすべてのフェーズを慎重に文書化していますが、データの異質性や非構造性のため、製品全体の分析は困難です。
本稿では,Large Language Models (LLMs) とともに知識グラフ(KGs)を活用するハイブリッド手法を提案する。
本稿では,衛星用電子基板に関するテストデータに着目したケーススタディについて考察する。
そこで我々は,セマンティック・センサ・ネットワーク・オントロジーを拡張した。
レポートのメタデータをKGに格納し、実際のテスト結果はVirtual Knowledge Graph経由でアクセス可能なパケットに格納します。
検証プロセスはLLMベースのアプローチで管理される。
我々はまた、このタスクの実行における最先端のLLMの性能を評価するためのベンチマーク研究も行っている。
最後に,既存の手動データ抽出プロセスの自動化と,その後のクロスレポート解析における検証のコストとメリットを分析した。
関連論文リスト
- MIMDE: Exploring the Use of Synthetic vs Human Data for Evaluating Multi-Insight Multi-Document Extraction Tasks [0.0]
我々は,Multi-Insight Multi-Document extract (MIMDE)タスクのセットを定義する。
この課題は、調査回答の分析から医療記録の処理に至るまで、多くの実践的応用に欠かせないものである。
そこで本研究では, 合成データの可能性を検討するために, 補完的な人間と合成データセットを新たに導入する。
論文 参考訳(メタデータ) (2024-11-29T13:24:10Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Using Large Language Models to Enrich the Documentation of Datasets for Machine Learning [1.8270184406083445]
大規模言語モデル(LLM)を用いて,文書から次元を自動的に抽出する戦略について検討する。
当社のアプローチは、データパブリッシャや実践者がマシン可読なドキュメントを作成するのに役立ちます。
我々は、我々のアプローチを実装するオープンソースツールと、実験のコードと結果を含むレプリケーションパッケージをリリースした。
論文 参考訳(メタデータ) (2024-04-04T10:09:28Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
本調査は,データアノテーションと合成のための大規模言語モデルの有用性に焦点を当てる。
LLMがアノテートできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションと合成にLLMを使用する際の主な課題と制限に関する詳細な議論を含む。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - KAXAI: An Integrated Environment for Knowledge Analysis and Explainable
AI [0.0]
本稿では,AutoML,XAI,合成データ生成を統合したシステムの設計について述べる。
このシステムは、複雑度を抽象化し、高いユーザビリティを提供しながら、機械学習のパワーをナビゲートし活用することができる。
論文 参考訳(メタデータ) (2023-12-30T10:20:47Z) - All Data on the Table: Novel Dataset and Benchmark for Cross-Modality
Scientific Information Extraction [39.05577374775964]
本稿では,テキスト中のエンティティをアノテートする半教師付きパイプラインと,テーブル内のエンティティとリレーションを反復的に提案する。
我々は,高品質なベンチマーク,大規模コーパス,半教師付きアノテーションパイプラインなど,科学コミュニティのための新たなリソースをリリースする。
論文 参考訳(メタデータ) (2023-11-14T14:22:47Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
本稿では,データ探索プロセスの簡略化を目的とした自動データ探索システムであるInsightPilotを紹介する。
InsightPilotは、理解、要約、説明などの適切な分析意図を自動的に選択する。
簡単に言うと、IQueryはデータ分析操作の抽象化と自動化であり、データアナリストのアプローチを模倣しています。
論文 参考訳(メタデータ) (2023-04-02T07:27:49Z) - Mapping Patterns for Virtual Knowledge Graphs [71.61234136161742]
仮想知識グラフ(VKG)は、レガシーデータソースの統合とアクセスのための最も有望なパラダイムの1つである。
データ管理、データ分析、概念モデリングにおいて研究された、確立された方法論とパターンに基づいて構築する。
検討されたVKGシナリオに基づいて,私たちのカタログを検証し,そのパターンの大部分をカバーすることを示す。
論文 参考訳(メタデータ) (2020-12-03T13:54:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。