Quantum Lotka-Volterra dynamics
- URL: http://arxiv.org/abs/2408.01726v1
- Date: Sat, 3 Aug 2024 09:50:03 GMT
- Title: Quantum Lotka-Volterra dynamics
- Authors: Yuechun Jiao, Yu Zhang, Jingxu Bai, Weilun Jiang, Yunhui He, Heng Shen, Suotang Jia, Jianming Zhao, C. Stuart Adams,
- Abstract summary: Physical systems that display competitive non-linear dynamics have played a key role in the development of mathematical models of Nature.
Here, we demonstrate predator-prey dynamics by laser excitation and ionisation of Rydberg atoms in a room temperature vapour cell.
- Score: 2.399579126929696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physical systems that display competitive non-linear dynamics have played a key role in the development of mathematical models of Nature. Important examples include predator-prey models in ecology, biology, consumer-resource models in economics, and reaction-diffusion equations in chemical reactions. However, as real world systems are embedded in complex environments, where it is difficult or even impossible to control external parameters, quantitative comparison between measurements and simple models remains challenging. This motivates the search for competitive dynamics in isolated physical systems, with precise control. An ideal candidate is laser excitation in dilute atomic ensembles. For example, atoms in highly-excited Rydberg states display rich many-body dynamics including ergodicity breaking, synchronisation and time crystals. Here, we demonstrate predator-prey dynamics by laser excitation and ionisation of Rydberg atoms in a room temperature vapour cell. Ionisation of excited atoms produce electric fields that suppress further excitation. This starves the ionisation process of resource, giving rise to predator-prey dynamics. By comparing our results to the Lotka-Volterra model, we demonstrate that as well applications in non-linear dynamics, our experiment has applications in metrology, and remote sensing of localised plasmas.
Related papers
- Enhanced coarsening of charge density waves induced by electron correlation: Machine-learning enabled large-scale dynamical simulations [4.94903410489486]
phase ordering kinetics of emergent orders in correlated electron systems is a fundamental topic in non-equilibrium physics.
We leverage modern machine learning (ML) methods to achieve a linear-scaling algorithm for simulating the coarsening of charge density waves (CDWs)
Our study provides fresh insights into the role of electron correlations in non-equilibrium dynamics and underscores the promise of ML force-field approaches.
arXiv Detail & Related papers (2024-12-30T16:44:11Z) - Emergent disorder and sub-ballistic dynamics in quantum simulations of the Ising model using Rydberg atom arrays [1.6982404417199617]
Rydberg atom arrays with Van der Waals interactions provide a controllable path to simulate the locally connected transverse-field Ising model (TFIM)
We experimentally investigate the physics of TFIM far from equilibrium and uncover significant deviations from the theoretical predictions.
Our findings highlight the crucial role of atom motion in the many-body dynamics of Rydberg atom arrays at the TFIM limit.
arXiv Detail & Related papers (2024-11-20T19:00:01Z) - A conditional latent autoregressive recurrent model for generation and forecasting of beam dynamics in particle accelerators [46.348283638884425]
We propose a two-step unsupervised deep learning framework named as Latent Autoregressive Recurrent Model (CLARM) for learning dynamics of charged particles in accelerators.
The CLARM can generate projections at various accelerator sampling modules by capturing and decoding the latent space representation.
The results demonstrate that the generative and forecasting ability of the proposed approach is promising when tested against a variety of evaluation metrics.
arXiv Detail & Related papers (2024-03-19T22:05:17Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Environmental Collapse Models [0.0]
In principle, isolated systems comprising only massive particles could evolve unitarily indefinitely in such models.
Since photons and gravitons are ubiquitous and scatter from massive particles, dynamical collapses of the former will effectively induce collapses of the latter.
We argue that these environmental collapse models may be consistent with quantum experiments on microscopic systems.
arXiv Detail & Related papers (2022-06-06T16:11:19Z) - Deconstructing the Inductive Biases of Hamiltonian Neural Networks [41.37309202965647]
Physics-inspired neural networks (NNs) dramatically outperform other learned dynamics models by leveraging strong inductive biases.
We show that, contrary to conventional wisdom, the improved generalization of HNNs is the result of modeling acceleration directly.
We show that by relaxing the inductive biases of these models, we can match or exceed performance on energy-conserving systems while dramatically improving performance on practical, non-conservative systems.
arXiv Detail & Related papers (2022-02-10T05:05:38Z) - Generalized Discrete Truncated Wigner Approximation for Nonadiabtic
Quantum-Classical Dynamics [0.0]
We introduce a linearized semiclassical method, the generalized discrete truncated Wigner approximation (GDTWA)
GDTWA samples the electron degrees of freedom in a discrete phase space, and forbids an unphysical growth of electronic state populations.
Our results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related fields.
arXiv Detail & Related papers (2021-04-14T21:53:35Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Spin transport in a tunable Heisenberg model realized with ultracold
atoms [0.0]
We implement the Heisenberg XXZ model with adjustable anisotropy and study spin transport far from equilibrium.
For positive anisotropies, the dynamics ranges from anomalous super-diffusion to sub-diffusion depending on anisotropy.
For negative anisotropies, we observe a crossover in the time domain from ballistic to diffusive transport.
arXiv Detail & Related papers (2020-05-19T16:08:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.