Something from Nothing: Enhanced Laser Cooling of a Mechanical Resonator via Zero-Photon Detection
- URL: http://arxiv.org/abs/2408.01734v2
- Date: Tue, 6 Aug 2024 15:37:03 GMT
- Title: Something from Nothing: Enhanced Laser Cooling of a Mechanical Resonator via Zero-Photon Detection
- Authors: Evan A. Cryer-Jenkins, Kyle D. Major, Jack Clarke, Georg Enzian, Magdalena Szczykulska, Jinglei Zhang, Arjun Gupta, Anthony C. Leung, Harsh Rathee, Andreas Ø. Svela, Anthony K. C. Tan, Almut Beige, Klaus Mølmer, Michael R. Vanner,
- Abstract summary: Measurement of the absence of photons offers significant potential for a wide range of new experimental directions.
We experimentally demonstrate cooling of a mechanical resonator via zero-photon detection on the anti-Stokes scattered optical field.
Our measurements are well captured by a master equation and the techniques introduced here open new avenues for cooling, quantum thermodynamics, quantum state engineering, and quantum measurement and control.
- Score: 5.894558519564981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Throughout quantum science and technology, measurement is used as a powerful resource for nonlinear operations and quantum state engineering. In particular, single-photon detection is commonly employed for quantum-information applications and tests of fundamental physics. By contrast, and perhaps counter-intuitively, measurement of the absence of photons also provides useful information, and offers significant potential for a wide range of new experimental directions. Here, we propose and experimentally demonstrate cooling of a mechanical resonator below its laser-cooled mechanical occupation via zero-photon detection on the anti-Stokes scattered optical field and verify this cooling through heterodyne measurements. Our measurements are well captured by a stochastic master equation and the techniques introduced here open new avenues for cooling, quantum thermodynamics, quantum state engineering, and quantum measurement and control.
Related papers
- Measurement of microwave photon correlations at millikelvin with a thermal detector [1.4059056945010209]
Microwave photons are important carriers of quantum information in many promising platforms for quantum computing.
We present a measurement technique with a nanobolometer that directly measures the photon statistics at millikelvin.
This technique is poised to serve in fundamental tests of quantum mechanics with microwave photons and function as a scalable readout solution for a quantum information processor.
arXiv Detail & Related papers (2024-07-06T18:15:08Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Resolution of 100 photons and quantum generation of unbiased random
numbers [0.0]
Quantum detection of light is mostly relegated to the microscale.
The ability to perform measurements to resolve photon numbers is highly desirable for a variety of quantum information applications.
In this work, we extend photon measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-efficient transition-edge sensors.
arXiv Detail & Related papers (2022-05-02T21:34:01Z) - Energetic cost of measurements using quantum, coherent, and thermal
light [0.0]
We study how the use of quantum, coherent, and classical thermal states of light in a circuit impacts the performance of quantum measurements.
We show that single-photon light shows an advantage in terms of energy cost per information gain, reaching the fundamental thermodynamic cost.
arXiv Detail & Related papers (2022-03-02T19:00:00Z) - Quantum control of a nanoparticle optically levitated in cryogenic free
space [0.0]
Tests of quantum mechanics on a macroscopic scale require extreme control over mechanical motion and its decoherence.
In this work, we optically levitate a femto-gram dielectric particle in cryogenic free space.
We cool its center-of-mass motion by measurement-based feedback to an average occupancy of 0.65 motional quanta, corresponding to a state purity of 43%.
arXiv Detail & Related papers (2021-03-05T18:12:50Z) - A Chirality-Based Quantum Leap [46.53135635900099]
Chiral degrees of freedom occur in matter and in electromagnetic fields.
Recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials.
arXiv Detail & Related papers (2020-08-31T22:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.