Joint Model Pruning and Resource Allocation for Wireless Time-triggered Federated Learning
- URL: http://arxiv.org/abs/2408.01765v1
- Date: Sat, 3 Aug 2024 12:19:23 GMT
- Title: Joint Model Pruning and Resource Allocation for Wireless Time-triggered Federated Learning
- Authors: Xinlu Zhang, Yansha Deng, Toktam Mahmoodi,
- Abstract summary: Time-triggered federated learning organizes users into tiers based on fixed time intervals.
We apply model pruning to wireless Time-triggered systems and jointly study the problem of optimizing the pruning ratio and bandwidth allocation.
Our proposed TT-Prune demonstrates a 40% reduction in communication cost, compared with the asynchronous multi-tier FL without model pruning.
- Score: 31.628735588144096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-triggered federated learning, in contrast to conventional event-based federated learning, organizes users into tiers based on fixed time intervals. However, this network still faces challenges due to a growing number of devices and limited wireless bandwidth, increasing issues like stragglers and communication overhead. In this paper, we apply model pruning to wireless Time-triggered systems and jointly study the problem of optimizing the pruning ratio and bandwidth allocation to minimize training loss under communication latency constraints. To solve this joint optimization problem, we perform a convergence analysis on the gradient $l_2$-norm of the asynchronous multi-tier federated learning (FL) model with adaptive model pruning. The convergence upper bound is derived and a joint optimization problem of pruning ratio and wireless bandwidth is defined to minimize the model training loss under a given communication latency constraint. The closed-form solutions for wireless bandwidth and pruning ratio by using KKT conditions are then formulated. As indicated in the simulation experiments, our proposed TT-Prune demonstrates a 40% reduction in communication cost, compared with the asynchronous multi-tier FL without model pruning, while maintaining the model convergence at the same level.
Related papers
- Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Hierarchical Federated Learning in Wireless Networks: Pruning Tackles Bandwidth Scarcity and System Heterogeneity [32.321021292376315]
We propose a pruning-enabled hierarchical federated learning (PHFL) in heterogeneous networks (HetNets)
We first derive an upper bound of the convergence rate that clearly demonstrates the impact of the model pruning and wireless communications.
We validate the effectiveness of our proposed PHFL algorithm in terms of test accuracy, wall clock time, energy consumption and bandwidth requirement.
arXiv Detail & Related papers (2023-08-03T07:03:33Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning (FL) is a privacy-preserving distributed learning framework where a server aggregates models updated by multiple devices without accessing their private datasets.
In this paper, we introduce model pruning for HFL in wireless networks to reduce the neural network scale.
We show that our proposed HFL with model pruning achieves similar learning accuracy compared with the HFL without model pruning and reduces about 50 percent communication cost.
arXiv Detail & Related papers (2023-05-15T22:04:49Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
Federated learning (FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other.
As the model size grows, the training latency due to limited transmission bandwidth and private information degrades while using differential privacy (DP) protection.
We propose sparsification empowered FL framework wireless channels, in over to improve training efficiency without sacrificing convergence performance.
arXiv Detail & Related papers (2023-04-09T05:21:15Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Time-triggered Federated Learning over Wireless Networks [48.389824560183776]
We present a time-triggered FL algorithm (TT-Fed) over wireless networks.
Our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively.
arXiv Detail & Related papers (2022-04-26T16:37:29Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications.
This paper proposes a wireless FL framework, which uploads local model parameters and computes global model parameters via wireless communications.
arXiv Detail & Related papers (2021-08-31T08:19:54Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.