Transform Arbitrary Good Quantum LDPC Codes into Good Geometrically Local Codes in Any Dimension
- URL: http://arxiv.org/abs/2408.01769v1
- Date: Sat, 3 Aug 2024 12:46:05 GMT
- Title: Transform Arbitrary Good Quantum LDPC Codes into Good Geometrically Local Codes in Any Dimension
- Authors: Xingjian Li, Ting-Chun Lin, Min-Hsiu Hsieh,
- Abstract summary: A key challenge is identifying the optimal code construction that maximizes both dimension and distance.
Recent advancements have produced several constructions, but these either depend on specific good quantum low-density parity-check (qLDPC) codes or are limited to three dimensions.
We introduce a construction that can transform any good qLDPC code into an optimal geometrically local quantum code.
- Score: 11.695180823001566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometrically local quantum codes, comprised of qubits and checks embedded in $\mathbb{R}^D$ with local check operators, have been a subject of significant interest. A key challenge is identifying the optimal code construction that maximizes both dimension and distance. Recent advancements have produced several constructions, but these either depend on specific good quantum low-density parity-check (qLDPC) codes or are limited to three dimensions. In this work, we introduce a construction that can transform any good qLDPC code into an optimal geometrically local quantum code. Our approach hinges on a novel procedure that extracts a two-dimensional structure from an arbitrary three-term chain complex. We expect that this procedure will find broader applications in areas such as weight reduction and the geometric realization of chain complexes.
Related papers
- List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Almost Linear Decoder for Optimal Geometrically Local Quantum Codes [8.837439668920288]
We show how to achieve geometrically local codes that maximize both the dimension and the distance, as well as the energy barrier of the code.
This provides the first decoder for an optimal 3D geometrically local code.
arXiv Detail & Related papers (2024-11-05T09:15:06Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Expansion of higher-dimensional cubical complexes with application to quantum locally testable codes [5.224344210588583]
We introduce a high-dimensional cubical complex, for any dimension t>0, and apply it to quantum locally testable codes.
For t=4 our construction gives a new family of "almost-good" quantum LTCs -- with constant relative rate, inverse-polylogarithmic relative distance and soundness, and constant-size parity checks.
arXiv Detail & Related papers (2024-02-12T08:32:13Z) - Layer Codes [0.0]
In three dimensions an analogous simple yet optimal code was not previously known.
The output codes have the special structure of being topological defect networks formed by layers of surface code joined along one-dimensional junctions.
arXiv Detail & Related papers (2023-09-28T15:11:37Z) - Geometrically Local Quantum and Classical Codes from Subdivision [10.357542321841887]
A geometrically local quantum code is an error correcting code situated within $mathbbRD$, where the checks only act on qubits within a fixed spatial distance.
Recently, Portnoy made a significant breakthrough with codes achieving optimal dimension and distance up to polylogs.
This paper bypasses this step and streamlines the construction by noticing that a family of good quantum low-density parity-check codes, balanced product codes, naturally carries a two-dimensional structure.
arXiv Detail & Related papers (2023-09-28T02:12:38Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Hierarchical memories: Simulating quantum LDPC codes with local gates [0.05156484100374058]
Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing efficient fault-tolerant quantum memories.
We construct a new family of hierarchical codes, that encode a number of logical qubits K = Omega(N/log(N)2.
Under conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all logical qubits are encoded in the surface code.
arXiv Detail & Related papers (2023-03-08T18:48:12Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Single-shot quantum error correction with the three-dimensional
subsystem toric code [77.34726150561087]
We introduce a new topological quantum code, the three-dimensional subsystem toric code (3D STC)
The 3D STC can be realized by measuring geometrically-local parity checks of weight at most three on the cubic lattice with open boundary conditions.
arXiv Detail & Related papers (2021-06-04T17:35:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.