STDA: Spatio-Temporal Dual-Encoder Network Incorporating Driver Attention to Predict Driver Behaviors Under Safety-Critical Scenarios
- URL: http://arxiv.org/abs/2408.01774v1
- Date: Sat, 3 Aug 2024 13:06:04 GMT
- Title: STDA: Spatio-Temporal Dual-Encoder Network Incorporating Driver Attention to Predict Driver Behaviors Under Safety-Critical Scenarios
- Authors: Dongyang Xu, Yiran Luo, Tianle Lu, Qingfan Wang, Qing Zhou, Bingbing Nie,
- Abstract summary: Driver attention was incorporated into a dual behavior-coder-en network named STDA for safety-critical scenarios.
STDA contains four parts: the driver attention prediction module, the fusion module designed to fuse the features between driver attention and raw images, and the temporary encoder module used to enhance the capability to interpret dynamic scenes.
The results show that STDA improves the G-mean from 0.659 to 0.719 when incorporating driver attention and adopting a temporal encoder module.
- Score: 11.303666834549896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate behavior prediction for vehicles is essential but challenging for autonomous driving. Most existing studies show satisfying performance under regular scenarios, but most neglected safety-critical scenarios. In this study, a spatio-temporal dual-encoder network named STDA for safety-critical scenarios was developed. Considering the exceptional capabilities of human drivers in terms of situational awareness and comprehending risks, driver attention was incorporated into STDA to facilitate swift identification of the critical regions, which is expected to improve both performance and interpretability. STDA contains four parts: the driver attention prediction module, which predicts driver attention; the fusion module designed to fuse the features between driver attention and raw images; the temporary encoder module used to enhance the capability to interpret dynamic scenes; and the behavior prediction module to predict the behavior. The experiment data are used to train and validate the model. The results show that STDA improves the G-mean from 0.659 to 0.719 when incorporating driver attention and adopting a temporal encoder module. In addition, extensive experimentation has been conducted to validate that the proposed module exhibits robust generalization capabilities and can be seamlessly integrated into other mainstream models.
Related papers
- Enhancing End-to-End Autonomous Driving with Latent World Model [78.22157677787239]
We propose a novel self-supervised method to enhance end-to-end driving without the need for costly labels.
Our framework textbfLAW uses a LAtent World model to predict future latent features based on the predicted ego actions and the latent feature of the current frame.
As a result, our approach achieves state-of-the-art performance in both open-loop and closed-loop benchmarks without costly annotations.
arXiv Detail & Related papers (2024-06-12T17:59:21Z) - Situation Awareness for Driver-Centric Driving Style Adaptation [3.568617847600189]
We propose a situation-aware driving style model based on different visual feature encoders pretrained on fleet data.
Our experiments show that the proposed method outperforms static driving styles significantly and forms plausible situation clusters.
arXiv Detail & Related papers (2024-03-28T17:19:16Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
We pioneer a novel behavior-aware trajectory prediction model (BAT)
Our model consists of behavior-aware, interaction-aware, priority-aware, and position-aware modules.
We evaluate BAT's performance across the Next Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD), and Macao Connected Autonomous Driving (MoCAD) datasets.
arXiv Detail & Related papers (2023-12-11T13:27:51Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - TransDARC: Transformer-based Driver Activity Recognition with Latent
Space Feature Calibration [31.908276711898548]
We present a vision-based framework for recognizing secondary driver behaviours based on visual transformers and an augmented feature distribution calibration module.
Our framework consistently leads to better recognition rates, surpassing previous state-of-the-art results of the public Drive&Act benchmark on all levels.
arXiv Detail & Related papers (2022-03-02T08:14:06Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.