論文の概要: MathLearner: A Large Language Model Agent Framework for Learning to Solve Mathematical Problems
- arxiv url: http://arxiv.org/abs/2408.01779v1
- Date: Sat, 3 Aug 2024 13:28:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 18:30:57.872177
- Title: MathLearner: A Large Language Model Agent Framework for Learning to Solve Mathematical Problems
- Title(参考訳): MathLearner: 数学的な問題を解決するための大規模言語モデルエージェントフレームワーク
- Authors: Wenbei Xie, Donglin Liu, Haoran Yan, Wenjie Wu, Zongyang Liu,
- Abstract要約: 本稿では,帰納的推論に基づく数学的問題を解くためのエージェントフレームワークを提案する。
学習情報の一般化に関する人間の学習過程をエミュレートすることにより、この枠組みは数学的推論プロセスにおいて優れた性能を発揮する。
我々のモデルは個人化された学習支援として利用でき、教育資源の不平等を軽減できる。
- 参考スコア(独自算出の注目度): 0.936726079405677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of artificial intelligence (AI), large language models (LLM) are widely used in many fields. However, the reasoning ability of LLM is still very limited when it comes to mathematical reasoning. Mathematics plays an important role in all aspects of human society and is a technical guarantee in the fields of healthcare, transport and aerospace, for this reason, the development of AI big language models in the field of mathematics has great potential significance. To improve the mathematical reasoning ability of large language models, we proposed an agent framework for learning to solve mathematical problems based on inductive reasoning. By emulating the human learning process of generalization of learned information and effective application of previous knowledge in new reasoning tasks, this framework has great performance in the mathematical reasoning process. It improves global accuracy over the baseline method (chain-of-thought) by 20.96% and solves 17.54% of the mathematical problems that the baseline cannot solve. Benefiting from the efficient RETRIEVAL method, our model improves the ability of large language models to efficiently use external knowledge, i.e., the mathematical computation of the model can be based on written procedures. In education, our model can be used as a personalised learning aid, thus reducing the inequality of educational resources.
- Abstract(参考訳): 人工知能(AI)の発展に伴い、多くの分野で大規模言語モデル(LLM)が広く使われている。
しかし、数学的推論に関しては、LLMの推論能力は依然として非常に限られている。
数学は人間の社会のあらゆる面において重要な役割を担い、医療、輸送、航空宇宙の分野で技術的に保証されている。
大規模言語モデルの数学的推論能力を向上させるために,帰納的推論に基づく数学的問題の解法を学習するためのエージェントフレームワークを提案した。
学習情報の一般化による人間の学習過程をエミュレートし、新しい推論タスクに先行知識を効果的に適用することにより、数学的推論プロセスにおいて優れた性能を発揮する。
ベースライン法(チェーン・オブ・シント)を20.96%改善し、ベースラインが解けない数学的問題の17.54%を解く。
効率的なRETRIEVAL法により,我々のモデルは,外部知識を効率的に活用する大規模言語モデルの能力を向上させる。
教育において、我々のモデルはパーソナライズされた学習支援として利用することができ、それによって教育資源の不平等が軽減される。
関連論文リスト
- LeanAgent: Lifelong Learning for Formal Theorem Proving [85.39415834798385]
フォーマルな定理証明のための新しい生涯学習フレームワークであるLeanAgentを紹介する。
LeanAgentは継続的に一般化し、拡張可能な数学的知識を改善します。
以前、23のリーンリポジトリで人間が公式に証明していなかった155の定理の証明に成功した。
論文 参考訳(メタデータ) (2024-10-08T17:11:24Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBenchは、大規模言語モデルの数学的能力を厳格に評価する新しいベンチマークである。
MathBenchは幅広い数学の分野にまたがっており、理論的な理解と実践的な問題解決のスキルの両方を詳細に評価している。
論文 参考訳(メタデータ) (2024-05-20T17:52:29Z) - Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks [34.09857430966818]
我々は,11番目と12番目の標準数学 NCERT 教科書から得られた数学データセット "MathQuest" を紹介する。
LLaMA-2, WizardMath, MAmmoTHの3つの大きな言語モデルを用いた微調整実験を行った。
この3つのモデルのうち,MAmmoTH-13Bが最も熟練したモデルとして登場し,提示された数理問題の解法において,最高レベルの能力を達成した。
論文 参考訳(メタデータ) (2024-04-19T08:45:42Z) - MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning [2.9104279358536647]
数学的推論のためのツール強化された大規模言語モデルであるMathSenseiを提案する。
ツールの補完的な利点として、知識検索(Bing Web Search)、プログラムジェネレータ+エグゼキュータ(Python)、記号方程式ソルバ(Wolfram-Alpha API)について検討する。
論文 参考訳(メタデータ) (2024-02-27T05:50:35Z) - ConceptMath: A Bilingual Concept-wise Benchmark for Measuring
Mathematical Reasoning of Large Language Models [67.32868432113587]
本稿では,Large Language Models (LLMs) の概念的数学的推論を評価するための詳細なベンチマークであるConceptMathを紹介する。
一般的な数学的推論を平均精度で評価する従来のベンチマークとは異なり、ConceptMathは数学の問題を数学的概念の階層の下に体系的に整理する。
論文 参考訳(メタデータ) (2024-02-22T16:06:49Z) - Math Agents: Computational Infrastructure, Mathematical Embedding, and
Genomics [0.0]
人間-AIチャット以外にも、大規模言語モデル(LLM)はプログラミング、アルゴリズム発見、定理証明に現れている。
本研究は「ムーアの数学法則」の新たなエントリとして数学エージェントと数学的埋め込みを紹介する。
プロジェクトは、情報システム生物学の老朽化問題に対処するために、数学エージェントと数学的埋め込みを使用することを目的としている。
論文 参考訳(メタデータ) (2023-07-04T20:16:32Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
大型言語モデル(LLM)と対話し,評価するためのプロトタイププラットフォームであるCheckMateを紹介した。
我々はCheckMateと共同で3つの言語モデル(InstructGPT, ChatGPT, GPT-4)を、学部レベルの数学の証明支援として評価する研究を行った。
我々は、人間の行動の分類を導き、概して肯定的な相関にもかかわらず、正しさと知覚的有用性の間に顕著な相違点があることを明らかにする。
論文 参考訳(メタデータ) (2023-06-02T17:12:25Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - Measuring Mathematical Problem Solving With the MATH Dataset [55.4376028963537]
12,500の競合数学問題のデータセットであるMATHを紹介する。
各問題には、答えの導出と説明を生成するためのモデルを教えるために使用できる完全なステップバイステップソリューションがあります。
また、モデルに数学の基礎を教えるための補助的事前学習データセットも提供します。
論文 参考訳(メタデータ) (2021-03-05T18:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。