論文の概要: Large Language Models for Mathematical Analysis
- arxiv url: http://arxiv.org/abs/2501.00059v1
- Date: Sat, 28 Dec 2024 20:37:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 20:43:30.629333
- Title: Large Language Models for Mathematical Analysis
- Title(参考訳): 数学解析のための大規模言語モデル
- Authors: Ziye Chen, Hao Qi,
- Abstract要約: この研究は、数学的推論における重要なギャップに対処し、信頼できるAIの進歩に寄与する。
DEMI-MathAnalysisデータセットを開発した。
また,LLMの問題解決能力を高めるためのガイドフレームワークも設計した。
- 参考スコア(独自算出の注目度): 3.7325315394927023
- License:
- Abstract: Mathematical problem-solving is a key field in artificial intelligence (AI) and a critical benchmark for evaluating the capabilities of large language models (LLMs). While extensive research has focused on mathematical problem-solving, most existing work and datasets concentrate on computational tasks, leaving gaps in areas like mathematical analysis, which demands rigorous proofs and formal reasoning. We developed the DEMI-MathAnalysis dataset, comprising proof-based problems from mathematical analysis topics such as Sequences and Limits, Infinite Series, and Convex Functions. We also designed a guiding framework to rigorously enhance LLMs' ability to solve these problems. Through fine-tuning LLMs on this dataset and employing our framework, we observed significant improvements in their capability to generate logical, complete, and elegant proofs. This work addresses critical gaps in mathematical reasoning and contributes to advancing trustworthy AI capable of handling formalized mathematical language. The code is publicly accessible at LLMs for Mathematical Analysis.
- Abstract(参考訳): 数学的な問題解決は人工知能(AI)の重要な分野であり、大規模言語モデル(LLM)の能力を評価するための重要なベンチマークである。
大規模な研究は数学の問題解決に焦点を合わせてきたが、既存の研究やデータセットは計算タスクに集中しており、厳密な証明や形式的な推論を必要とする数学的分析のような分野にギャップを残している。
DEMI-MathAnalysis データセットを開発した。Sequences や Limits, Infinite Series, Convex Function などの数学的解析トピックから,証明に基づく問題を構成する。
また,LLMの問題解決能力を高めるためのガイドフレームワークも設計した。
このデータセットの微調整とフレームワークの利用により、論理的、完全、エレガントな証明を生成する能力の大幅な改善が観察された。
この研究は、数学的推論における重要なギャップに対処し、形式化された数学的言語を扱うことのできる信頼できるAIの発展に寄与する。
コードはLLMs for Mathematical Analysisで公開されている。
関連論文リスト
- MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task [49.355810887265925]
数学的推論ステップ拡張のための新しいフレームワークであるMathFimerを紹介する。
我々は、慎重にキュレートしたNuminaMath-FIMデータセットに基づいて、特殊モデルMathFimer-7Bを開発した。
次に、これらのモデルを適用して、解鎖に詳細な中間ステップを挿入することで、既存の数学的推論データセットを強化する。
論文 参考訳(メタデータ) (2025-02-17T11:22:24Z) - One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs [57.48325300739872]
証明生成のための数学的大規模言語モデルを活用することは、LLM研究の基本的なトピックである。
現状のLCMが証明できる能力は、学習中に関連する証明プロセスに遭遇したかどうかに大きく依存していると論じる。
人間の数学教育で一般的に用いられる「反例による防御」の教育的手法に触発されて,我々の研究は,反例を通して数学的推論と証明を行うLLMの能力を高めることを目的としている。
論文 参考訳(メタデータ) (2025-02-12T02:01:10Z) - HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
本稿では,解析的近似技術を必要とする応用数学問題に挑戦するデータセットであるHARDMathを紹介する。
本フレームワークは,数値基底真理に対して検証された解を用いて,多数の問題を自動生成する。
HARDMath-miniは,366問題からなるサブサンプルテストセットであり,応用科学の文脈で定式化された40の単語問題に対して,オープンソースLLMとクローズドソースLLMの両方を評価する。
論文 参考訳(メタデータ) (2024-10-13T20:09:41Z) - LeanAgent: Lifelong Learning for Formal Theorem Proving [85.39415834798385]
フォーマルな定理証明のための新しい生涯学習フレームワークであるLeanAgentを紹介する。
LeanAgentは継続的に一般化し、拡張可能な数学的知識を改善します。
以前、23のリーンリポジトリで人間が公式に証明していなかった155の定理の証明に成功した。
論文 参考訳(メタデータ) (2024-10-08T17:11:24Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
大規模言語モデル(LLM)は、非常に高度な自然言語理解を持ち、強力な問題解決能力を示した。
本稿では,新たに開発された"MathOdyssey"データセットを用いて,LLMの数学的問題解決能力について検討する。
論文 参考訳(メタデータ) (2024-06-26T13:02:35Z) - Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks [34.09857430966818]
我々は,11番目と12番目の標準数学 NCERT 教科書から得られた数学データセット "MathQuest" を紹介する。
LLaMA-2, WizardMath, MAmmoTHの3つの大きな言語モデルを用いた微調整実験を行った。
この3つのモデルのうち,MAmmoTH-13Bが最も熟練したモデルとして登場し,提示された数理問題の解法において,最高レベルの能力を達成した。
論文 参考訳(メタデータ) (2024-04-19T08:45:42Z) - Evaluating LLMs' Mathematical Reasoning in Financial Document Question
Answering [53.56653281752486]
本研究では,大言語モデルによる4つの財務質問応答データセットの数学的推論について検討する。
数理推論のステップの数が増えるにつれて、テーブルの複雑さや性能の変化に対する感度に焦点をあてる。
半構造化文書に適した新しいプロンプト技術を導入する。
論文 参考訳(メタデータ) (2024-02-17T05:10:18Z) - math-PVS: A Large Language Model Framework to Map Scientific
Publications to PVS Theories [10.416375584563728]
本研究では,大規模言語モデル(LLM)の高度な数学的概念の定式化への適用性について検討する。
我々は、研究論文から数学的定理を抽出し、形式化する、Emphmath-PVSと呼ばれる自動過程を構想する。
論文 参考訳(メタデータ) (2023-10-25T23:54:04Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
本稿では,中国初の数学的事前学習言語モデル(PLM)を提示することにより,機械の数学的知性向上を目指す。
他の標準のNLPタスクとは異なり、数学的テキストは問題文に数学的用語、記号、公式を含むため理解が難しい。
基礎課程と上級課程の両方からなる数学PLMの学習を改善するための新しいカリキュラム事前学習手法を設計する。
論文 参考訳(メタデータ) (2022-06-13T17:03:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。