論文の概要: Batch Active Learning in Gaussian Process Regression using Derivatives
- arxiv url: http://arxiv.org/abs/2408.01861v1
- Date: Sat, 3 Aug 2024 20:13:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 18:11:11.422888
- Title: Batch Active Learning in Gaussian Process Regression using Derivatives
- Title(参考訳): 誘導体を用いたガウス過程回帰におけるバッチアクティブ学習
- Authors: Hon Sum Alec Yu, Christoph Zimmer, Duy Nguyen-Tuong,
- Abstract要約: ガウス過程回帰モデルにおけるバッチアクティブラーニングにおける微分情報の利用について検討する。
提案手法では,データバッチの選択に予測共分散行列を用いて,サンプルの完全相関を利用する。
- 参考スコア(独自算出の注目度): 4.4456278306068935
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We investigate the use of derivative information for Batch Active Learning in Gaussian Process regression models. The proposed approach employs the predictive covariance matrix for selection of data batches to exploit full correlation of samples. We theoretically analyse our proposed algorithm taking different optimality criteria into consideration and provide empirical comparisons highlighting the advantage of incorporating derivatives information. Our results show the effectiveness of our approach across diverse applications.
- Abstract(参考訳): ガウス過程回帰モデルにおけるバッチアクティブラーニングにおける微分情報の利用について検討する。
提案手法では,データバッチの選択に予測共分散行列を用いて,サンプルの完全相関を利用する。
理論的には,提案アルゴリズムの最適性基準が異なることを考慮し,微分情報を組み込むことの利点を強調した経験的比較を行う。
この結果から,多様なアプリケーションにまたがるアプローチの有効性が示唆された。
関連論文リスト
- Sparse Variational Student-t Processes [8.46450148172407]
学生Tプロセスは、重い尾の分布とデータセットをアウトリーチでモデル化するために使用される。
本研究では,学生プロセスが現実のデータセットに対してより柔軟になるためのスパース表現フレームワークを提案する。
UCIとKaggleの様々な合成および実世界のデータセットに対する2つの提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-12-09T12:55:20Z) - On Training Implicit Meta-Learning With Applications to Inductive
Weighing in Consistency Regularization [0.0]
暗黙的メタラーニング(IML)では、特にヘシアン(Hessian)の計算に2ドル(約2,200円)の勾配を必要とする。
ヘッセンの様々な近似が提案されたが、計算コスト、安定性、解の一般化、推定精度の体系的な比較はほとんど見過ごされてしまった。
本稿では,ドメイン固有の特徴を抽出するために,信頼ネットワークをトレーニングすることで,有用画像のアップウェイトや配布外サンプルのダウンウェイトを学べることを示す。
論文 参考訳(メタデータ) (2023-10-28T15:50:03Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
コアセット選択とアクティブラーニングの両方に対処するための理論的に最適な解を提案する。
提案手法であるCOPSは,サブサンプルデータに基づいてトレーニングされたモデルの損失を最小限に抑えるために設計されている。
論文 参考訳(メタデータ) (2023-09-05T14:06:33Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - Active Learning for Regression with Aggregated Outputs [28.40183946090337]
本稿では,ラベル付き集合を逐次選択し,ラベル付き集合を減らして予測性能を向上させる能動的学習法を提案する。
種々のデータセットを用いた実験により,提案手法は既存の手法よりもラベル付き集合が少なく,予測性能が向上することを示した。
論文 参考訳(メタデータ) (2022-10-04T02:45:14Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
ガウス過程に不確実性のある2つの新しい能動学習アルゴリズムを提案する。
提案手法は不確実性の影響を取り入れ,予測性能の向上を実現する。
本手法は, 複合胴体の自動形状制御における予測モデルの改善に応用されている。
論文 参考訳(メタデータ) (2020-04-23T02:04:53Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。