論文の概要: Image Clustering Algorithm Based on Self-Supervised Pretrained Models and Latent Feature Distribution Optimization
- arxiv url: http://arxiv.org/abs/2408.01920v2
- Date: Sat, 10 Aug 2024 06:14:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 20:13:45.386453
- Title: Image Clustering Algorithm Based on Self-Supervised Pretrained Models and Latent Feature Distribution Optimization
- Title(参考訳): 自己教師付き事前学習モデルと潜在特徴分布最適化に基づく画像クラスタリングアルゴリズム
- Authors: Qiuyu Zhu, Liheng Hu, Sijin Wang,
- Abstract要約: 本稿では,自己教師付き事前学習モデルと潜在特徴分布最適化に基づく画像クラスタリングアルゴリズムを提案する。
我々の手法は最新のクラスタリングアルゴリズムより優れ、最先端のクラスタリング結果が得られる。
- 参考スコア(独自算出の注目度): 4.39139858370436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the face of complex natural images, existing deep clustering algorithms fall significantly short in terms of clustering accuracy when compared to supervised classification methods, making them less practical. This paper introduces an image clustering algorithm based on self-supervised pretrained models and latent feature distribution optimization, substantially enhancing clustering performance. It is found that: (1) For complex natural images, we effectively enhance the discriminative power of latent features by leveraging self-supervised pretrained models and their fine-tuning, resulting in improved clustering performance. (2) In the latent feature space, by searching for k-nearest neighbor images for each training sample and shortening the distance between the training sample and its nearest neighbor, the discriminative power of latent features can be further enhanced, and clustering performance can be improved. (3) In the latent feature space, reducing the distance between sample features and the nearest predefined cluster centroids can optimize the distribution of latent features, therefore further improving clustering performance. Through experiments on multiple datasets, our approach outperforms the latest clustering algorithms and achieves state-of-the-art clustering results. When the number of categories in the datasets is small, such as CIFAR-10 and STL-10, and there are significant differences between categories, our clustering algorithm has similar accuracy to supervised methods without using pretrained models, slightly lower than supervised methods using pre-trained models. The code linked algorithm is https://github.com/LihengHu/semi.
- Abstract(参考訳): 複雑な自然画像の面において、既存の深層クラスタリングアルゴリズムは、教師付き分類法に比べてクラスタリング精度が著しく低いため、実用的ではない。
本稿では,自己教師付き事前学習モデルと潜在特徴分布最適化に基づく画像クラスタリングアルゴリズムを提案し,クラスタリング性能を大幅に向上させる。
1) 複雑な自然画像に対して, 自己教師付き事前学習モデルとその微調整を活用することにより, 潜在特徴の識別能力を効果的に向上し, クラスタリング性能が向上することがわかった。
2)潜伏特徴空間では,各トレーニングサンプルのk-アレスト近傍画像を探索し,トレーニングサンプルと隣接近傍の距離を短縮することにより,潜伏特徴の識別能力をさらに向上し,クラスタリング性能を向上させることができる。
(3) 潜時特徴空間では, 標本特徴量と最寄りのクラスタセントロイドとの距離を減少させることで, 潜時特徴量の分布を最適化し, クラスタリング性能を向上させることができる。
複数のデータセットの実験を通じて、我々の手法は最新のクラスタリングアルゴリズムより優れ、最先端のクラスタリング結果が得られる。
CIFAR-10 や STL-10 など,データセット内のカテゴリ数が少ない場合,クラスタリングアルゴリズムは事前学習モデルを用いずに教師付き手法と類似した精度で,事前学習モデルを用いた教師付き手法よりもわずかに低い。
コードリンクアルゴリズムはhttps://github.com/LihengHu/semiである。
関連論文リスト
- GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
サンプル安定性(DECS)により駆動されるディープ埋め込みクラスタリングアルゴリズムを提案する。
具体的には、まずオートエンコーダで初期特徴空間を構築し、次にサンプル安定性に制約されたクラスタ指向の埋め込み機能を学ぶ。
5つのデータセットに対する実験結果から,提案手法は最先端のクラスタリング手法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-01-29T09:19:49Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
サブセット選択は、トレーニングデータの小さな部分を特定する上で重要な役割を果たす、基本的な問題である。
我々は,k中心および不確かさサンプリング目的関数の重み付け和に基づいて,サブセットを計算する新しい係数3近似アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-17T04:41:07Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
ディープクラスタリングは、インスタンスの表現(つまり、表現学習)を最適化し、固有のデータ分散を探索することができる。
結合された目的は、すべてのインスタンスが一様機能に崩壊する、自明な解決策を意味する。
本研究では,1段階クラスタリングにおいて,教師あり学習における一般的な識別タスクが不安定であることを示す。
新規な安定クラスタ識別(SeCu)タスクを提案し、それに応じて新しいハードネス対応クラスタリング基準を得ることができる。
論文 参考訳(メタデータ) (2023-11-24T06:43:26Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Neural Mixture Models with Expectation-Maximization for End-to-end Deep
Clustering [0.8543753708890495]
本稿では,ニューラルネットワークを用いた混合モデルに基づくクラスタリングを実現する。
我々は,Eステップとして前方パス,Mステップとして後方パスを動作させるバッチワイズEMイテレーションにより,ネットワークのエンドツーエンドをトレーニングする。
トレーニングされたネットワークは、k-meansに依存した単一ステージのディープクラスタリング手法よりも優れています。
論文 参考訳(メタデータ) (2021-07-06T08:00:58Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
表現学習とクラスタリングを1つのパイプラインに初めて統合するフレームワークを提案する。
提案フレームワークは,近年開発された生成モデルを用いて,本質的な特徴を学習する能力を活用している。
実験の結果,提案手法の性能は,最先端の手法よりも優れているか,少なくとも同等であることがわかった。
論文 参考訳(メタデータ) (2021-06-11T04:08:54Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Contrastive Clustering [57.71729650297379]
本稿では,インスタンスレベルのコントラスト学習を明示的に行うContrastive Clustering (CC)を提案する。
特にCCは、CIFAR-10(CIFAR-100)データセット上で0.705(0.431)のNMIを達成しており、最高のベースラインと比較して最大19%(39%)のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-09-21T08:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。