A Semi-supervised Multi-channel Graph Convolutional Network for Query Classification in E-commerce
- URL: http://arxiv.org/abs/2408.01928v1
- Date: Sun, 4 Aug 2024 04:52:21 GMT
- Title: A Semi-supervised Multi-channel Graph Convolutional Network for Query Classification in E-commerce
- Authors: Chunyuan Yuan, Ming Pang, Zheng Fang, Xue Jiang, Changping Peng, Zhangang Lin,
- Abstract summary: We propose a novel Semi-supervised Multi-channel Graph Convolutional Network (SMGCN) to address the above problems.
SMGCN extends category information and enhances the posterior label by utilizing the similarity score between the query and categories.
- Score: 10.870790183380517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Query intent classification is an essential module for customers to find desired products on the e-commerce application quickly. Most existing query intent classification methods rely on the users' click behavior as a supervised signal to construct training samples. However, these methods based entirely on posterior labels may lead to serious category imbalance problems because of the Matthew effect in click samples. Compared with popular categories, it is difficult for products under long-tail categories to obtain traffic and user clicks, which makes the models unable to detect users' intent for products under long-tail categories. This in turn aggravates the problem that long-tail categories cannot obtain traffic, forming a vicious circle. In addition, due to the randomness of the user's click, the posterior label is unstable for the query with similar semantics, which makes the model very sensitive to the input, leading to an unstable and incomplete recall of categories. In this paper, we propose a novel Semi-supervised Multi-channel Graph Convolutional Network (SMGCN) to address the above problems from the perspective of label association and semi-supervised learning. SMGCN extends category information and enhances the posterior label by utilizing the similarity score between the query and categories. Furthermore, it leverages the co-occurrence and semantic similarity graph of categories to strengthen the relations among labels and weaken the influence of posterior label instability. We conduct extensive offline and online A/B experiments, and the experimental results show that SMGCN significantly outperforms the strong baselines, which shows its effectiveness and practicality.
Related papers
- Federated Learning with Only Positive Labels by Exploring Label Correlations [78.59613150221597]
Federated learning aims to collaboratively learn a model by using the data from multiple users under privacy constraints.
In this paper, we study the multi-label classification problem under the federated learning setting.
We propose a novel and generic method termed Federated Averaging by exploring Label Correlations (FedALC)
arXiv Detail & Related papers (2024-04-24T02:22:50Z) - Hierarchical Query Classification in E-commerce Search [38.67034103433015]
E-commerce platforms typically store and structure product information and search data in a hierarchy.
Efficiently categorizing user search queries into a similar hierarchical structure is paramount in enhancing user experience on e-commerce platforms as well as news curation and academic research.
The inherent complexity of hierarchical query classification is compounded by two primary challenges: (1) the pronounced class imbalance that skews towards dominant categories, and (2) the inherent brevity and ambiguity of search queries that hinder accurate classification.
arXiv Detail & Related papers (2024-03-09T21:55:55Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Consistent Text Categorization using Data Augmentation in e-Commerce [1.558017967663767]
We propose a new framework for consistent text categorization.
Our goal is to improve the model's consistency while maintaining its production-level performance.
arXiv Detail & Related papers (2023-05-09T12:47:28Z) - Category-Adaptive Label Discovery and Noise Rejection for Multi-label
Image Recognition with Partial Positive Labels [78.88007892742438]
Training multi-label models with partial positive labels (MLR-PPL) attracts increasing attention.
Previous works regard unknown labels as negative and adopt traditional MLR algorithms.
We propose to explore semantic correlation among different images to facilitate the MLR-PPL task.
arXiv Detail & Related papers (2022-11-15T02:11:20Z) - Semi-supervised Object Detection via Virtual Category Learning [68.26956850996976]
This paper proposes to use confusing samples proactively without label correction.
Specifically, a virtual category (VC) is assigned to each confusing sample.
It is attributed to specifying the embedding distance between the training sample and the virtual category.
arXiv Detail & Related papers (2022-07-07T16:59:53Z) - Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning [20.66927648806676]
We propose a novel framework for semi-supervised semantic segmentation, named adaptive equalization learning (AEL)
AEL balances the training of well and badly performed categories, with a confidence bank to track category-wise performance.
AEL outperforms the state-of-the-art methods by a large margin on the Cityscapes and Pascal VOC benchmarks.
arXiv Detail & Related papers (2021-10-11T17:59:55Z) - DeepCAT: Deep Category Representation for Query Understanding in
E-commerce Search [15.041444067591007]
We propose a deep learning model, DeepCAT, which learns joint word-category representations to enhance the query understanding process.
Our results show that DeepCAT reaches a 10% improvement on em minority classes and a 7.1% improvement on em tail queries over a state-of-the-art label embedding model.
arXiv Detail & Related papers (2021-04-23T18:04:44Z) - APRF-Net: Attentive Pseudo-Relevance Feedback Network for Query
Categorization [12.634704014206294]
We propose a novel deep neural model named textbfAttentive textbfPseudo textbfRelevance textbfFeedback textbfNetwork (APRF-Net) to enhance the representation of rare queries for query categorization.
Our results show that the APRF-Net significantly improves query categorization by 5.9% on $F1@1$ score over the baselines, which increases to 8.2% improvement for the rare queries.
arXiv Detail & Related papers (2021-04-23T02:34:08Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
We present an elegant and effective approach for addressing limitations in existing multi-label classification models.
By performing soft n-gram interaction matching, we match labels with natural language descriptions.
arXiv Detail & Related papers (2020-05-18T15:27:55Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.
arXiv Detail & Related papers (2020-02-13T18:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.