論文の概要: A Survey and Evaluation of Adversarial Attacks for Object Detection
- arxiv url: http://arxiv.org/abs/2408.01934v3
- Date: Thu, 03 Apr 2025 10:40:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:54:15.203403
- Title: A Survey and Evaluation of Adversarial Attacks for Object Detection
- Title(参考訳): 物体検出のための敵攻撃の実態調査と評価
- Authors: Khoi Nguyen Tiet Nguyen, Wenyu Zhang, Kangkang Lu, Yuhuan Wu, Xingjian Zheng, Hui Li Tan, Liangli Zhen,
- Abstract要約: 深層学習モデルは、信頼できるが誤った予測をすることを欺くような敵対的な例に対して脆弱である。
この脆弱性は、自動運転車、セキュリティ監視、安全クリティカルな検査システムなどの高リスクなアプリケーションに重大なリスクをもたらす。
本稿では,対象検出アーキテクチャに特有の敵攻撃を分類するための新しい分類枠組みを提案する。
- 参考スコア(独自算出の注目度): 11.48212060875543
- License:
- Abstract: Deep learning models achieve remarkable accuracy in computer vision tasks, yet remain vulnerable to adversarial examples--carefully crafted perturbations to input images that can deceive these models into making confident but incorrect predictions. This vulnerability pose significant risks in high-stakes applications such as autonomous vehicles, security surveillance, and safety-critical inspection systems. While the existing literature extensively covers adversarial attacks in image classification, comprehensive analyses of such attacks on object detection systems remain limited. This paper presents a novel taxonomic framework for categorizing adversarial attacks specific to object detection architectures, synthesizes existing robustness metrics, and provides a comprehensive empirical evaluation of state-of-the-art attack methodologies on popular object detection models, including both traditional detectors and modern detectors with vision-language pretraining. Through rigorous analysis of open-source attack implementations and their effectiveness across diverse detection architectures, we derive key insights into attack characteristics. Furthermore, we delineate critical research gaps and emerging challenges to guide future investigations in securing object detection systems against adversarial threats. Our findings establish a foundation for developing more robust detection models while highlighting the urgent need for standardized evaluation protocols in this rapidly evolving domain.
- Abstract(参考訳): ディープラーニングモデルは、コンピュータビジョンタスクにおいて顕著な精度を達成するが、敵の例に弱いままである。
この脆弱性は、自動運転車、セキュリティ監視、安全クリティカルな検査システムなどの高リスクなアプリケーションに重大なリスクをもたらす。
既存の文献では画像分類における敵攻撃を網羅しているが、対象検出システムに対する攻撃の包括的分析は依然として限られている。
本稿では,オブジェクト検出アーキテクチャに特有の敵攻撃を分類し,既存のロバスト性指標を合成し,従来の検出手法と視覚言語事前学習を用いた現代の検出手法を含む,一般的なオブジェクト検出モデルに対する最先端攻撃手法の包括的評価を行う。
オープンソースのアタック実装の厳密な分析と、さまざまな検出アーキテクチャにおけるその有効性を通じて、アタック特性に関する重要な洞察を導き出す。
さらに,敵の脅威に対して物体検出システムを確保する上で,重要な研究ギャップと今後の研究の指針となる課題について述べる。
本研究は, この急速に発展する領域において, 標準化された評価プロトコルの必要性を強調しつつ, より堅牢な検出モデルを構築する基盤を確立した。
関連論文リスト
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Physical Adversarial Attacks For Camera-based Smart Systems: Current
Trends, Categorization, Applications, Research Challenges, and Future Outlook [2.1771693754641013]
本研究の目的は,身体的敵意攻撃の概念を深く理解し,その特徴を分析し,特徴を識別することである。
本稿では, 対象タスクに応じて異なるアプリケーションで分類した, 様々な物理的敵攻撃手法について検討する。
本研究は,これらの攻撃手法の有効性,ステルス性,ロバスト性の観点から評価する。
論文 参考訳(メタデータ) (2023-08-11T15:02:19Z) - Physical Adversarial Attacks for Surveillance: A Survey [40.81031907691243]
本稿では,監視アプリケーションに対する身体的敵攻撃の学習と設計における最近の試みと成果を概観する。
特に,身体的敵攻撃を解析するための枠組みを提案し,4つの主要な監視課題に対する身体的敵攻撃を包括的に調査する。
本稿では,物理的な攻撃に対する監視システム内でのレジリエンスを構築するための重要なステップについて述べる。
論文 参考訳(メタデータ) (2023-05-01T20:19:59Z) - It Is All About Data: A Survey on the Effects of Data on Adversarial
Robustness [4.1310970179750015]
逆の例は、攻撃者が意図的にモデルを混乱させてミスを犯すように設計された機械学習モデルへの入力である。
この問題に対処するために、敵の堅牢性の領域は、敵の攻撃の背後にあるメカニズムとこれらの攻撃に対する防御を調査する。
論文 参考訳(メタデータ) (2023-03-17T04:18:03Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
ディープラーニングモデルは、誤った分類決定を行うためにモデルを誤解させる可能性のあるデータインスタンスに対して脆弱であることがわかった。
本調査では,ネットワーク侵入検出分野における敵機械学習のさまざまな側面を利用した研究について検討する。
論文 参考訳(メタデータ) (2021-12-06T19:10:23Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
マルコフ決定過程(MDPs)の制御チャネルにおける最適ステルス毒素攻撃の設計問題について検討する。
この研究は、MDPに適用された敵国・毒殺攻撃や強化学習(RL)手法に対する研究コミュニティの最近の関心に動機づけられている。
論文 参考訳(メタデータ) (2021-09-15T09:13:10Z) - Understanding Object Detection Through An Adversarial Lens [14.976840260248913]
本稿では, 対向レンズ下での深部物体検出装置の脆弱性を分析し評価するための枠組みを提案する。
提案手法は, リアルタイムオブジェクト検出システムにおいて, 対向行動やリスクを解析するための方法論的ベンチマークとして機能することが実証された。
我々は、このフレームワークが、現実世界のアプリケーションにデプロイされるディープオブジェクト検出器のセキュリティリスクと敵の堅牢性を評価するツールとしても役立つと推測する。
論文 参考訳(メタデータ) (2020-07-11T18:41:47Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
本研究は,ASVシステムに対して,別個の検出ネットワークによる敵攻撃から防御することを提案する。
VGGライクな二分分類検出器を導入し、対向サンプルの検出に有効であることが実証された。
論文 参考訳(メタデータ) (2020-06-11T04:31:56Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。