論文の概要: Unleashing the Power of Pre-trained Encoders for Universal Adversarial Attack Detection
- arxiv url: http://arxiv.org/abs/2504.00429v1
- Date: Tue, 01 Apr 2025 05:21:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:22:09.410701
- Title: Unleashing the Power of Pre-trained Encoders for Universal Adversarial Attack Detection
- Title(参考訳): ユニバーサル・ディバイザ・アタック検出のための事前学習エンコーダのパワー解放
- Authors: Yinghe Zhang, Chi Liu, Shuai Zhou, Sheng Shen, Peng Gui,
- Abstract要約: アドリアック攻撃は、現実世界のAIシステムにとって重要なセキュリティ脅威となる。
本稿では,大規模事前学習型視覚言語モデルCLIPに基づく,軽量な逆検出フレームワークを提案する。
- 参考スコア(独自算出の注目度): 21.03032944637112
- License:
- Abstract: Adversarial attacks pose a critical security threat to real-world AI systems by injecting human-imperceptible perturbations into benign samples to induce misclassification in deep learning models. While existing detection methods, such as Bayesian uncertainty estimation and activation pattern analysis, have achieved progress through feature engineering, their reliance on handcrafted feature design and prior knowledge of attack patterns limits generalization capabilities and incurs high engineering costs. To address these limitations, this paper proposes a lightweight adversarial detection framework based on the large-scale pre-trained vision-language model CLIP. Departing from conventional adversarial feature characterization paradigms, we innovatively adopt an anomaly detection perspective. By jointly fine-tuning CLIP's dual visual-text encoders with trainable adapter networks and learnable prompts, we construct a compact representation space tailored for natural images. Notably, our detection architecture achieves substantial improvements in generalization capability across both known and unknown attack patterns compared to traditional methods, while significantly reducing training overhead. This study provides a novel technical pathway for establishing a parameter-efficient and attack-agnostic defense paradigm, markedly enhancing the robustness of vision systems against evolving adversarial threats.
- Abstract(参考訳): 敵対的攻撃は、人間の知覚できない摂動を良質なサンプルに注入し、ディープラーニングモデルの誤分類を誘発することで、現実世界のAIシステムに重大なセキュリティ脅威をもたらす。
ベイズの不確実性推定やアクティベーションパターン解析のような既存の検出手法は、特徴工学を通じて進歩を遂げてきたが、手作りの特徴設計への依存と攻撃パターンの事前知識は、一般化能力を制限し、高いエンジニアリングコストを発生させる。
このような制約に対処するために,大規模な事前学習型視覚言語モデルCLIPに基づく,軽量な逆検出フレームワークを提案する。
従来の対角的特徴評価パラダイムとは別に,異常検出の観点を革新的に採用する。
訓練可能なアダプタネットワークと学習可能なプロンプトでCLIPのデュアルビジュアルテキストエンコーダを協調的に微調整することにより、自然画像に適したコンパクトな表現空間を構築する。
特に,我々の検出アーキテクチャは,従来の手法と比較して,未知の攻撃パターンと未知の攻撃パターンの一般化能力を大幅に向上すると同時に,トレーニングのオーバーヘッドを大幅に削減する。
この研究は、パラメータ効率と攻撃非依存の防衛パラダイムを確立するための新しい技術経路を提供し、進化する敵の脅威に対する視覚システムの堅牢性を大幅に向上させる。
関連論文リスト
- Perturb, Attend, Detect and Localize (PADL): Robust Proactive Image Defense [5.150608040339816]
本稿では,クロスアテンションに基づく符号化と復号の対称スキームを用いて,画像固有の摂動を生成する新しいソリューションであるPADLを紹介する。
提案手法は,StarGANv2,BlendGAN,DiffAE,StableDiffusion,StableDiffusionXLなど,さまざまなアーキテクチャ設計の未確認モデルに一般化する。
論文 参考訳(メタデータ) (2024-09-26T15:16:32Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Improving the Robustness of Object Detection and Classification AI models against Adversarial Patch Attacks [2.963101656293054]
我々は攻撃手法を解析し、堅牢な防御手法を提案する。
我々は,物体形状,テクスチャ,位置を利用する逆パッチ攻撃を用いて,モデル信頼度を20%以上下げることに成功した。
敵攻撃にも拘わらず,本手法はモデルレジリエンスを著しく向上させ,高精度かつ信頼性の高いローカライゼーションを実現している。
論文 参考訳(メタデータ) (2024-03-04T13:32:48Z) - FACADE: A Framework for Adversarial Circuit Anomaly Detection and
Evaluation [9.025997629442896]
FACADEは、ディープニューラルネットワークにおける教師なしの機械的異常検出のために設計されている。
我々のアプローチは、モデルの堅牢性を改善し、スケーラブルなモデル監視を強化し、現実のデプロイメント環境で有望なアプリケーションを実証することを目指している。
論文 参考訳(メタデータ) (2023-07-20T04:00:37Z) - Consistent Valid Physically-Realizable Adversarial Attack against
Crowd-flow Prediction Models [4.286570387250455]
ディープラーニング(DL)モデルは、都市全体のクラウドフローパターンを効果的に学習することができる。
DLモデルは、目立たない逆境の摂動に対して不利に作用することが知られている。
論文 参考訳(メタデータ) (2023-03-05T13:30:25Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。