論文の概要: Faster Diffusion Action Segmentation
- arxiv url: http://arxiv.org/abs/2408.02024v1
- Date: Sun, 4 Aug 2024 13:23:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:35:21.823115
- Title: Faster Diffusion Action Segmentation
- Title(参考訳): 高速拡散作用セグメンテーション
- Authors: Shuaibing Wang, Shunli Wang, Mingcheng Li, Dingkang Yang, Haopeng Kuang, Ziyun Qian, Lihua Zhang,
- Abstract要約: 時間的行動分類(TAS)はビデオ解析において不可欠な課題であり、連続したフレームを別のアクションセグメントに分割し分類することを目的としている。
拡散モデルの最近の進歩は、安定したトレーニングプロセスと高品質な生成能力により、TASタスクにおいて大きな成功を収めている。
本稿では,効率的かつ高性能なTASアルゴリズムであるEffiDiffActを提案する。
- 参考スコア(独自算出の注目度): 9.868244939496678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal Action Segmentation (TAS) is an essential task in video analysis, aiming to segment and classify continuous frames into distinct action segments. However, the ambiguous boundaries between actions pose a significant challenge for high-precision segmentation. Recent advances in diffusion models have demonstrated substantial success in TAS tasks due to their stable training process and high-quality generation capabilities. However, the heavy sampling steps required by diffusion models pose a substantial computational burden, limiting their practicality in real-time applications. Additionally, most related works utilize Transformer-based encoder architectures. Although these architectures excel at capturing long-range dependencies, they incur high computational costs and face feature-smoothing issues when processing long video sequences. To address these challenges, we propose EffiDiffAct, an efficient and high-performance TAS algorithm. Specifically, we develop a lightweight temporal feature encoder that reduces computational overhead and mitigates the rank collapse phenomenon associated with traditional self-attention mechanisms. Furthermore, we introduce an adaptive skip strategy that allows for dynamic adjustment of timestep lengths based on computed similarity metrics during inference, thereby further enhancing computational efficiency. Comprehensive experiments on the 50Salads, Breakfast, and GTEA datasets demonstrated the effectiveness of the proposed algorithm.
- Abstract(参考訳): 時間的アクションセグメンテーション(TAS)はビデオ分析において不可欠なタスクであり、連続したフレームを別のアクションセグメンテーションに分割し分類することを目的としている。
しかし、アクション間のあいまいな境界は、高精度なセグメンテーションにとって重要な課題である。
拡散モデルの最近の進歩は、安定したトレーニングプロセスと高品質な生成能力により、TASタスクにおいて大きな成功を収めている。
しかし、拡散モデルで必要とされる重いサンプリングステップは、リアルタイムアプリケーションにおける実用性を制限し、かなりの計算負荷をもたらす。
さらに、ほとんどの関連研究はTransformerベースのエンコーダアーキテクチャを利用している。
これらのアーキテクチャは、長距離依存関係の取得に優れていますが、長いビデオシーケンスを処理する際に、高い計算コストと特徴平準化の問題に直面します。
これらの課題に対処するために,効率的かつ高性能なTASアルゴリズムであるEffiDiffActを提案する。
具体的には、計算オーバーヘッドを低減し、従来の自己認識機構に関連するランク崩壊現象を緩和する軽量な時間的特徴エンコーダを開発する。
さらに、推論中に計算された類似度指標に基づいて時間ステップ長を動的に調整できる適応型スキップ戦略を導入し、計算効率をさらに向上する。
50Salads、Breakfast、GTEAデータセットに関する総合的な実験は、提案アルゴリズムの有効性を実証した。
関連論文リスト
- EffiCANet: Efficient Time Series Forecasting with Convolutional Attention [12.784289506021265]
EffiCANetは計算効率を維持しながら予測精度を向上させるように設計されている。
EffiCANetは最先端モデルに対するMAEの最大10.02%の削減を実現している。
論文 参考訳(メタデータ) (2024-11-07T12:54:42Z) - SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
本稿では,メモリオーバーヘッドを削減するためのメモリ効率スケジューリング手法と,精度の劣化を最小限に抑えるためのオンライン調整機構を提案する。
SparseTemは効率の良いDetでは1.79x、CRNNでは4.72xの高速化を実現している。
論文 参考訳(メタデータ) (2024-10-28T07:13:25Z) - ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference [41.41316718220569]
ExpertFlowは、柔軟なルーティングを調整し、CPUとGPU間の効率的な専門家スケジューリングを可能にすることで、推論効率を向上させるように設計されている。
実験により、ExpertFlowは最大93.72%のGPUメモリを節約し、ベースライン法に比べて推論速度を2~10倍に向上することを示した。
論文 参考訳(メタデータ) (2024-10-23T15:24:54Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Efficient Temporal Action Segmentation via Boundary-aware Query Voting [51.92693641176378]
BaFormerは境界対応のTransformerネットワークで、各ビデオセグメントをインスタンストークンとしてトークン化する。
BaFormerは実行時間の6%しか利用せず、計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-05-25T00:44:13Z) - An Efficient Framework for Few-shot Skeleton-based Temporal Action
Segmentation [6.610414185789651]
テンポラルアクションセグメンテーション(TAS)は、長いアントリムされたアクションシーケンスのアクションを分類し、特定することを目的としている。
本研究では,データ拡張法と改良モデルを含む,数発の骨格型TASの効率的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-20T14:08:37Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - Augmented Transformer with Adaptive Graph for Temporal Action Proposal
Generation [79.98992138865042]
TAPGの長期的および局所的時間的コンテキストを利用するための適応グラフネットワーク(ATAG)を備えた拡張トランスを提案する。
具体的には、スニペット動作損失と前部ブロックを装着し、拡張トランスと呼ばれるバニラトランスを強化する。
位置情報と隣接特徴の差異をマイニングすることで局所時間文脈を構築するための適応型グラフ畳み込みネットワーク(gcn)を提案する。
論文 参考訳(メタデータ) (2021-03-30T02:01:03Z) - Real-time Semantic Segmentation with Fast Attention [94.88466483540692]
本稿では,高解像度画像と映像をリアルタイムにセマンティックセグメンテーションするための新しいアーキテクチャを提案する。
提案したアーキテクチャは我々の空間的注意の速さに依存しており、これは一般的な自己注意機構の単純かつ効率的な修正である。
複数のデータセットに対する結果から,既存の手法に比べて精度と速度が向上し,優れた性能を示した。
論文 参考訳(メタデータ) (2020-07-07T22:37:16Z) - MS-TCN++: Multi-Stage Temporal Convolutional Network for Action
Segmentation [87.16030562892537]
本稿では,時間的行動分割タスクのための多段階アーキテクチャを提案する。
第1段階は、次の段階によって洗練される初期予測を生成する。
我々のモデルは3つのデータセットで最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T14:50:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。