論文の概要: MAS-Attention: Memory-Aware Stream Processing for Attention Acceleration on Resource-Constrained Edge Devices
- arxiv url: http://arxiv.org/abs/2411.17720v1
- Date: Wed, 20 Nov 2024 19:44:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-01 04:14:32.186714
- Title: MAS-Attention: Memory-Aware Stream Processing for Attention Acceleration on Resource-Constrained Edge Devices
- Title(参考訳): MAS-Attention:資源制約エッジデバイスにおけるアテンションアクセラレーションのためのメモリ対応ストリーム処理
- Authors: Mohammadali Shakerdargah, Shan Lu, Chao Gao, Di Niu,
- Abstract要約: 本稿では,メモリ制約付きエッジアクセラレータ上での正確なアテンション推定高速化手法を提案する。
エッジコンピューティングのシナリオではFLAT (State-of-the-art attention fusion Method) と比較して,2.75倍のスピードアップと54%のエネルギー消費削減が見られた。
- 参考スコア(独自算出の注目度): 24.1144641404561
- License:
- Abstract: The advent of foundation models have revolutionized various fields, enabling unprecedented task accuracy and flexibility in computational linguistics, computer vision and other domains. Attention mechanism has become an essential component of foundation models, due to their superb capability of capturing correlations in a sequence. However, attention results in quadratic complexity in memory and compute as the context length grows. Although many fusion-based exact attention acceleration algorithms have been developed for datacenter-grade GPUs and accelerators leveraging multi-core parallelism and data locality, yet it remains a significant challenge to accelerate attention on resource-constrained edge neural accelerators with limited compute units and stringent on-chip caches. In this paper, we propose a scheme for exact attention inference acceleration on memory-constrained edge accelerators, by parallelizing the utilization of heterogeneous compute units, i.e., vector processing units and matrix processing units. Our method involves scheduling workloads onto these different compute units in a multi-tiered tiling scheme to process tiled vector workloads and matrix workloads in attention as two streams, respecting the workload dependencies. We search for tiling factors to maximize the parallelization of both compute units while considering I/O overhead, and propose a proactive cache overwrite strategy to avoid undesirable cache spills in reality. Extensive results based on open-sourced simulation frameworks show up to 2.75x speedup and 54% reduction in energy consumption as compared to the state-of-the-art attention fusion method (FLAT) in the edge computing scenario. Further experiments on a real-world edge neural processing unit demonstrate speedup of up to 1.76x for attention as compared to FLAT, without affecting model output accuracy.
- Abstract(参考訳): 基礎モデルの出現は様々な分野に革命をもたらし、計算言語学、コンピュータビジョン、その他の領域における前例のないタスク精度と柔軟性を可能にした。
ファウンデーションモデルにおいて、アテンションメカニズムは、シーケンス内の相関をキャプチャするスーパーブな能力のため、重要な構成要素となっている。
しかし、注意は、文脈の長さが大きくなるにつれて、メモリと計算の2次複雑さをもたらす。
核融合に基づく正確な注意促進アルゴリズムは、データセンターグレードのGPUやアクセラレータ向けに、マルチコア並列性とデータローカリティを活用して開発されているが、限られた計算ユニットと厳密なオンチップキャッシュを持つリソース制約されたエッジニューラルアクセラレーターへの注意を加速することは、依然として大きな課題である。
本稿では,ベクトル処理ユニットと行列処理ユニットという異種計算ユニットの利用を並列化することにより,メモリ制約エッジアクセラレータ上での正確な注意推定促進手法を提案する。
本手法では,負荷依存を尊重する2つのストリームとして,階層化されたベクトルワークロードと行列ワークロードの処理を行うマルチ階層タイリング方式を用いて,これらの計算ユニットにワークロードをスケジューリングする。
我々は、I/Oオーバーヘッドを考慮して、両方の計算ユニットの並列化を最大化するためのタイリング要素を探索し、実際には望ましくないキャッシュの流出を避けるために、アクティブなキャッシュ上書き戦略を提案する。
オープンソースのシミュレーションフレームワークに基づく大規模な結果は、エッジコンピューティングシナリオにおける最先端の注意融合法(FLAT)と比較して、最大2.75倍のスピードアップと54%のエネルギー消費削減を示す。
実世界のエッジニューラルネットワークユニットに関するさらなる実験は、モデル出力精度に影響を与えることなく、FLATと比較して、注意のために最大1.76倍のスピードアップを示す。
関連論文リスト
- Dynamic Range Reduction via Branch-and-Bound [1.533133219129073]
ハードウェアアクセラレーターを強化するための主要な戦略は、算術演算における精度の低下である。
本稿ではQUBO問題における精度向上のための完全原理分岐境界アルゴリズムを提案する。
実験は、実際の量子アニール上でのアルゴリズムの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-17T03:07:56Z) - Faster Diffusion Action Segmentation [9.868244939496678]
時間的行動分類(TAS)はビデオ解析において不可欠な課題であり、連続したフレームを別のアクションセグメントに分割し分類することを目的としている。
拡散モデルの最近の進歩は、安定したトレーニングプロセスと高品質な生成能力により、TASタスクにおいて大きな成功を収めている。
本稿では,効率的かつ高性能なTASアルゴリズムであるEffiDiffActを提案する。
論文 参考訳(メタデータ) (2024-08-04T13:23:18Z) - Hybrid Dynamic Pruning: A Pathway to Efficient Transformer Inference [1.0919012968294923]
本稿では,頭部の疎度を用いてトランスフォーマーを高速化し,疎度をブロックし,注意の計算を減らし,メモリアクセスを減らし,新しいアルゴリズムアーキテクチャの共設計手法を提案する。
注目スコアと注目ヘッドの巨大な冗長性を観測し、実行時に注目行列内の重要でないブロックをプルーする整数ベースの行平衡ブロックプルーニングを提案する。
また、実行時に重要でないヘッドを検出およびプルーする整数ベースのヘッドプルーニングを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:15:16Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
本稿では,状態空間モデルを短時間の畳み込みに置き換えたCHELAを提案する。
提案手法の有効性を示すために,Long Range Arenaベンチマークと言語モデリングタスクについて実験を行った。
論文 参考訳(メタデータ) (2024-06-12T12:12:38Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
トランスフォーマーベースのモデルは、自然言語処理の最も広く使われているアーキテクチャの1つとして登場した。
これらの巨大なモデルはメモリが空腹で、最先端のAIアクセラレータでも大きな推論レイテンシが生じる。
本稿ではトークン生成フェーズの自己認識をスケーラブルに計算する手法であるLeanAttentionを提案する。
論文 参考訳(メタデータ) (2024-05-17T00:52:39Z) - Efficient and Economic Large Language Model Inference with Attention Offloading [11.698376311689456]
トランスフォーマーベースの大規模言語モデル(LLM)は、生成タスクにおいて優れたパフォーマンスを示すが、現実のサービスにおいて大きな課題をもたらす。
このミスマッチは LLM の自己回帰的な性質から生じ、生成フェーズはリソース要求の異なる演算子から構成される。
LLMの効率性と費用対効果を高めるために,注意オフロードの概念を導入する。
論文 参考訳(メタデータ) (2024-05-03T02:15:15Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - Video Frame Interpolation Transformer [86.20646863821908]
本稿では,トランスフォーマーをベースとした動画フレームワークを提案し,コンテンツ認識集約の重み付けと,自己注意操作による長距離依存を考慮した。
グローバルな自己注意の計算コストが高くなるのを避けるため、ビデオに局所的注意の概念を導入する。
さらに,トランスフォーマーの可能性を完全に実現するためのマルチスケール・フレーム・スキームを開発した。
論文 参考訳(メタデータ) (2021-11-27T05:35:10Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
機械学習アルゴリズムは、人工知能(AI)モデルをトレーニングするために、ネットワークエッジにデプロイされる。
本稿では,パラメータ(計算負荷)割り当てと帯域幅割り当ての新しい共同設計に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-10T05:52:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。