Quantum Bayesian Games
- URL: http://arxiv.org/abs/2408.02058v1
- Date: Sun, 4 Aug 2024 15:15:42 GMT
- Title: Quantum Bayesian Games
- Authors: John B. DeBrota, Peter J. Love,
- Abstract summary: We apply a Bayesian agent-based framework inspired by QBism to iterations of two quantum games, the CHSH game and the quantum prisoners' dilemma.
In each two-player game, players hold beliefs about an amount of shared entanglement and about the actions or beliefs of the other player.
We simulate iterated play to see if and how players can learn about the presence of shared entanglement and to explore how their performance, their beliefs, and the game's structure interrelate.
- Score: 0.09208007322096534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We apply a Bayesian agent-based framework inspired by QBism to iterations of two quantum games, the CHSH game and the quantum prisoners' dilemma. In each two-player game, players hold beliefs about an amount of shared entanglement and about the actions or beliefs of the other player. Each takes actions which maximize their expected utility and revises their beliefs with the classical Bayes rule between rounds. We simulate iterated play to see if and how players can learn about the presence of shared entanglement and to explore how their performance, their beliefs, and the game's structure interrelate. In the CHSH game, we find that players can learn that entanglement is present and use this to achieve quantum advantage. We find that they can only do so if they also believe the other player will act correctly to exploit the entanglement. In the case of low or zero entanglement in the CHSH game, the players cannot achieve quantum advantage, even in the case where they believe the entanglement is higher than it is. For the prisoners dilemma, we show that assuming 1-fold rational players (rational players who believe the other player is also rational) reduces the quantum extension [Eisert, Wilkens, and Lewenstein, Phys. Rev. Lett. 83, 3077 (1999)] of the prisoners dilemma to a game with only two strategies, one of which (defect) is dominant for low entanglement, and the other (the quantum strategy Q) is dominant for high entanglement. For intermediate entanglement, neither strategy is dominant. We again show that players can learn entanglement in iterated play. We also show that strong belief in entanglement causes optimal play even in the absence of entanglement -- showing that belief in entanglement is acting as a proxy for the players trusting each other. Our work points to possible future applications in resource detection and quantum algorithm design.
Related papers
- Imperfect-Recall Games: Equilibrium Concepts and Their Complexity [74.01381499760288]
We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before.
In the framework of extensive-form games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings.
arXiv Detail & Related papers (2024-06-23T00:27:28Z) - Exploiting Finite Geometries for Better Quantum Advantages in Mermin-Like Games [0.0]
Quantum games embody non-intuitive consequences of quantum phenomena, such as entanglement and contextuality.
In this paper we look at the geometric structure behind such classical strategies, and borrow ideas from the geometry of symplectic polar spaces to maximise this quantum advantage.
arXiv Detail & Related papers (2024-03-14T15:56:43Z) - Repeated quantum game as a stochastic game: Effects of the shadow of the
future and entanglement [0.0]
We present a systematic investigation of the quantum games, constructed using a novel repeated game protocol.
We find that how two pure strategies fare against each other is crucially dependent on the discount factor.
In the quantum game setup, always-defect strategy can be beaten by the tit-for-tat strategy for high enough discount factor.
arXiv Detail & Related papers (2023-12-08T15:54:51Z) - Photonic implementation of the quantum Morra game [69.65384453064829]
We study a faithful translation of a two-player quantum Morra game, which builds on previous work by including the classical game as a special case.
We propose a natural deformation of the game in the quantum regime in which Alice has a winning advantage, breaking the balance of the classical game.
We discuss potential applications of the quantum Morra game to the study of quantum information and communication.
arXiv Detail & Related papers (2023-11-14T19:41:50Z) - Quantum Tapsilou -- a quantum game inspired from the traditional Greek
coin tossing game tapsilou [0.0]
This paper introduces a new quantum game called Quantum Tapsilou.
It is inspired by the classical traditional Greek coin tossing game tapsilou.
The two most important novelties of Quantum Tapsilou can be attributed to its implementation of entanglement.
arXiv Detail & Related papers (2023-09-03T16:45:16Z) - Abstracting Imperfect Information Away from Two-Player Zero-Sum Games [85.27865680662973]
Nayyar et al. (2013) showed that imperfect information can be abstracted away from common-payoff games by having players publicly announce their policies as they play.
This work shows that certain regularized equilibria do not possess the aforementioned non-correspondence problem.
Because these regularized equilibria can be made arbitrarily close to Nash equilibria, our result opens the door to a new perspective to solving two-player zero-sum games.
arXiv Detail & Related papers (2023-01-22T16:54:06Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - Conditions that enable a player to surely win in sequential quantum
games [0.0]
This paper studies sequential quantum games under the assumption that the moves of the players are drawn from groups and not just plain sets.
The main conclusion of this paper is that the specific rules of a game are absolutely critical.
arXiv Detail & Related papers (2021-06-13T15:16:31Z) - Surpassing the Classical Limit in Magic Square Game with Distant Quantum
Dots Coupled to Optical Cavities [0.0]
We propose an experimental setup for quantum computation with quantum dots inside optical cavities.
Considering various physical imperfections of our setup, we first show that the MSG can be implemented with the current technology.
We show that our work gives rise to a new version of the game. That is, if the referee has information on the physical realization and strategy of the players, he can bias the game through filtered randomness and increase his winning probability.
arXiv Detail & Related papers (2020-11-03T05:45:06Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z) - Chaos, Extremism and Optimism: Volume Analysis of Learning in Games [55.24050445142637]
We present volume analyses of Multiplicative Weights Updates (MWU) and Optimistic Multiplicative Weights Updates (OMWU) in zero-sum as well as coordination games.
We show that OMWU contracts volume, providing an alternative understanding for its known convergent behavior.
We also prove a no-free-lunch type of theorem, in the sense that when examining coordination games the roles are reversed: OMWU expands volume exponentially fast, whereas MWU contracts.
arXiv Detail & Related papers (2020-05-28T13:47:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.