Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image
- URL: http://arxiv.org/abs/2408.02079v2
- Date: Sat, 14 Sep 2024 15:18:54 GMT
- Title: Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image
- Authors: Xinlin Ren, Chenjie Cao, Yanwei Fu, Xiangyang Xue,
- Abstract summary: Recent advancements in Neural Surface Reconstruction (NSR) have significantly improved multi-view reconstruction when coupled with volume rendering.
We propose an investigation into feature-level consistent loss, aiming to harness valuable feature priors from diverse pretext visual tasks.
Our results, analyzed on DTU and EPFL, reveal that feature priors from image matching and multi-view stereo datasets outperform other pretext tasks.
- Score: 87.00660347447494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Neural Surface Reconstruction (NSR) have significantly improved multi-view reconstruction when coupled with volume rendering. However, relying solely on photometric consistency in image space falls short of addressing complexities posed by real-world data, including occlusions and non-Lambertian surfaces. To tackle these challenges, we propose an investigation into feature-level consistent loss, aiming to harness valuable feature priors from diverse pretext visual tasks and overcome current limitations. It is crucial to note the existing gap in determining the most effective pretext visual task for enhancing NSR. In this study, we comprehensively explore multi-view feature priors from seven pretext visual tasks, comprising thirteen methods. Our main goal is to strengthen NSR training by considering a wide range of possibilities. Additionally, we examine the impact of varying feature resolutions and evaluate both pixel-wise and patch-wise consistent losses, providing insights into effective strategies for improving NSR performance. By incorporating pre-trained representations from MVSFormer and QuadTree, our approach can generate variations of MVS-NeuS and Match-NeuS, respectively. Our results, analyzed on DTU and EPFL datasets, reveal that feature priors from image matching and multi-view stereo outperform other pretext tasks. Moreover, we discover that extending patch-wise photometric consistency to the feature level surpasses the performance of pixel-wise approaches. These findings underscore the effectiveness of these techniques in enhancing NSR outcomes.
Related papers
- Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey [16.89460694470542]
Implicit Neural Representations (INRs) have emerged as a paradigm in knowledge representation.
INRs leverage multilayer perceptrons (MLPs) to model data as continuous implicit functions.
This survey introduces a clear taxonomy that categorises them into four key areas: activation functions, position encoding, combined strategies, and network structure.
arXiv Detail & Related papers (2024-11-06T06:14:24Z) - Towards Cross-View-Consistent Self-Supervised Surround Depth Estimation [9.569646683579899]
Self-Supervised Surround Depth Estimation from consecutive images offers an economical alternative.
Previous SSSDE methods have proposed different mechanisms to fuse information across images, but few of them explicitly consider the cross-view constraints.
This paper proposes an efficient and consistent pose estimation design and two loss functions to enhance cross-view consistency for SSSDE.
arXiv Detail & Related papers (2024-07-04T16:29:05Z) - W-Net: A Facial Feature-Guided Face Super-Resolution Network [8.037821981254389]
Face Super-Resolution aims to recover high-resolution (HR) face images from low-resolution (LR) ones.
Existing approaches are not ideal due to their low reconstruction efficiency and insufficient utilization of prior information.
This paper proposes a novel network architecture called W-Net to address this challenge.
arXiv Detail & Related papers (2024-06-02T09:05:40Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Feature-Driven Super-Resolution for Object Detection [13.748941620767452]
This paper proposes a simple but powerful feature-driven super-resolution (FDSR) to improve the detection performance of low-resolution (LR) images.
FDSR outperforms the detection performance mAP on MS COCO validation, VOC2007 databases with good generalization to other detection networks.
arXiv Detail & Related papers (2020-04-01T16:33:07Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.