Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey
- URL: http://arxiv.org/abs/2411.03688v1
- Date: Wed, 06 Nov 2024 06:14:24 GMT
- Title: Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey
- Authors: Amer Essakine, Yanqi Cheng, Chun-Wun Cheng, Lipei Zhang, Zhongying Deng, Lei Zhu, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero,
- Abstract summary: Implicit Neural Representations (INRs) have emerged as a paradigm in knowledge representation.
INRs leverage multilayer perceptrons (MLPs) to model data as continuous implicit functions.
This survey introduces a clear taxonomy that categorises them into four key areas: activation functions, position encoding, combined strategies, and network structure.
- Score: 16.89460694470542
- License:
- Abstract: Implicit Neural Representations (INRs) have emerged as a paradigm in knowledge representation, offering exceptional flexibility and performance across a diverse range of applications. INRs leverage multilayer perceptrons (MLPs) to model data as continuous implicit functions, providing critical advantages such as resolution independence, memory efficiency, and generalisation beyond discretised data structures. Their ability to solve complex inverse problems makes them particularly effective for tasks including audio reconstruction, image representation, 3D object reconstruction, and high-dimensional data synthesis. This survey provides a comprehensive review of state-of-the-art INR methods, introducing a clear taxonomy that categorises them into four key areas: activation functions, position encoding, combined strategies, and network structure optimisation. We rigorously analyse their critical properties, such as full differentiability, smoothness, compactness, and adaptability to varying resolutions while also examining their strengths and limitations in addressing locality biases and capturing fine details. Our experimental comparison offers new insights into the trade-offs between different approaches, showcasing the capabilities and challenges of the latest INR techniques across various tasks. In addition to identifying areas where current methods excel, we highlight key limitations and potential avenues for improvement, such as developing more expressive activation functions, enhancing positional encoding mechanisms, and improving scalability for complex, high-dimensional data. This survey serves as a roadmap for researchers, offering practical guidance for future exploration in the field of INRs. We aim to foster new methodologies by outlining promising research directions for INRs and applications.
Related papers
- Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image [87.00660347447494]
Recent advancements in Neural Surface Reconstruction (NSR) have significantly improved multi-view reconstruction when coupled with volume rendering.
We propose an investigation into feature-level consistent loss, aiming to harness valuable feature priors from diverse pretext visual tasks.
Our results, analyzed on DTU and EPFL, reveal that feature priors from image matching and multi-view stereo datasets outperform other pretext tasks.
arXiv Detail & Related papers (2024-08-04T16:09:46Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
Foundational vision transformer models have shown impressive few shot performance on many vision tasks.
This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework.
arXiv Detail & Related papers (2024-06-13T16:30:32Z) - Dynamic and Adaptive Feature Generation with LLM [10.142660254703225]
We propose a dynamic and adaptive feature generation method that enhances the interpretability of the feature generation process.
Our approach broadens the applicability across various data types and tasks and draws advantages over strategic flexibility.
arXiv Detail & Related papers (2024-06-04T20:32:14Z) - Optimizing cnn-Bigru performance: Mish activation and comparative analysis with Relu [0.0]
Activation functions (AF) are fundamental components within neural networks, enabling them to capture complex patterns and relationships in the data.
This study illuminates the effectiveness of AF in elevating the performance of intrusion detection systems.
arXiv Detail & Related papers (2024-05-30T21:48:56Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection.
We reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making.
arXiv Detail & Related papers (2023-09-29T06:48:16Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision.
Existing literature addresses this challenge by employing local-based representation approaches.
This article proposes a novel model, Robust Saliency-aware Distillation (RSaD), for few-shot fine-grained visual recognition.
arXiv Detail & Related papers (2023-05-12T00:13:17Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
Video salient object detection (VSOD) is an important task in many vision applications.
We propose an adaptive local-global refinement framework for VSOD.
We show that our weighting methodology can further exploit the feature correlations, thus driving the network to learn more discriminative feature representation.
arXiv Detail & Related papers (2021-04-29T14:14:11Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.