論文の概要: Understanding Deep Learning via Notions of Rank
- arxiv url: http://arxiv.org/abs/2408.02111v1
- Date: Sun, 4 Aug 2024 18:47:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:05:52.041531
- Title: Understanding Deep Learning via Notions of Rank
- Title(参考訳): ランク表記による深層学習の理解
- Authors: Noam Razin,
- Abstract要約: この論文は、ディープラーニングの理論を発展させる鍵としてランクの概念を提唱している。
特に、勾配に基づくトレーニングは、いくつかのニューラルネットワークアーキテクチャにおいて、低ランクに対する暗黙の正規化を誘導できると確認する。
明示的な正規化スキームとデータ前処理アルゴリズムを設計するための我々の理論の実践的意味を述べる。
- 参考スコア(独自算出の注目度): 5.439020425819001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the extreme popularity of deep learning in science and industry, its formal understanding is limited. This thesis puts forth notions of rank as key for developing a theory of deep learning, focusing on the fundamental aspects of generalization and expressiveness. In particular, we establish that gradient-based training can induce an implicit regularization towards low rank for several neural network architectures, and demonstrate empirically that this phenomenon may facilitate an explanation of generalization over natural data (e.g., audio, images, and text). Then, we characterize the ability of graph neural networks to model interactions via a notion of rank, which is commonly used for quantifying entanglement in quantum physics. A central tool underlying these results is a connection between neural networks and tensor factorizations. Practical implications of our theory for designing explicit regularization schemes and data preprocessing algorithms are presented.
- Abstract(参考訳): 科学と産業でディープラーニングが極端に人気があるにもかかわらず、その正式な理解は限られている。
この論文は、一般化と表現性の基本的な側面に焦点をあて、深層学習の理論を発展させる鍵としてランクの概念を提示している。
特に、勾配に基づくトレーニングは、いくつかのニューラルネットワークアーキテクチャにおいて低階に対する暗黙の正規化を誘導できることを確立し、この現象が自然データ(例えば、音声、画像、テキスト)に対する一般化の説明を促進することを実証的に実証する。
そこで我々は,量子物理学における絡み合いの定量化によく用いられるランクの概念を用いて,相互作用をモデル化するグラフニューラルネットワークの能力を特徴付ける。
これらの結果の根底にある中心的なツールは、ニューラルネットワークとテンソル分解の間の接続である。
明示的な正規化スキームとデータ前処理アルゴリズムを設計するための我々の理論の実践的意味を述べる。
関連論文リスト
- Collective variables of neural networks: empirical time evolution and scaling laws [0.535514140374842]
実験的なニューラル・タンジェント・カーネルのスペクトル、特にエントロピーとトレースのスペクトルに対する特定の測定により、ニューラルネットワークが学習した表現についての洞察が得られることを示す。
結果は、トランスフォーマー、オートエンコーダ、グラフニューラルネットワーク、強化学習研究など、より複雑なネットワークで示される前に、まずテストケースで実証される。
論文 参考訳(メタデータ) (2024-10-09T21:37:14Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
論文 参考訳(メタデータ) (2024-07-03T14:07:41Z) - The semantic landscape paradigm for neural networks [0.0]
本稿では,ニューラルネットワークのトレーニング力学を記述する概念的および数学的枠組みであるセマンティックランドスケープパラダイムを紹介する。
具体的には,グルーキングとスケールの出現はパーコレーション現象と関連し,ニューラルネットワークのスケーリング法則はグラフ上のランダムウォークの統計から説明できることを示す。
論文 参考訳(メタデータ) (2023-07-18T18:48:54Z) - Deep Learning Meets Sparse Regularization: A Signal Processing
Perspective [17.12783792226575]
データに適合するように訓練されたニューラルネットワークの機能特性を特徴付ける数学的枠組みを提案する。
このフレームワークをサポートする主要な数学的ツールは、変換領域スパース正規化、計算トモグラフィーのラドン変換、近似理論である。
このフレームワークは、ニューラルネットワークトレーニングにおける重量減衰正則化の効果、ネットワークアーキテクチャにおけるスキップ接続と低ランク重量行列の使用、ニューラルネットワークにおける空間性の役割、そしてニューラルネットワークが高次元問題でうまく機能する理由を説明する。
論文 参考訳(メタデータ) (2023-01-23T17:16:21Z) - How You Start Matters for Generalization [26.74340246715699]
ニューラルネットワークの一般化は、その初期化に強く結びついていることが示される。
議論を呼んでいるフラットミニマ予想に反論する。
論文 参考訳(メタデータ) (2022-06-17T05:30:56Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
ニューラルネットワークのランクは、層をまたがる情報を測定する。
これは機械学習の幅広い領域にまたがる重要な構造条件の例である。
しかし、ニューラルネットワークでは、低ランク構造を生み出す固有のメカニズムはあいまいで不明瞭である。
論文 参考訳(メタデータ) (2022-06-13T12:03:32Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
本稿では,NNを連鎖グラフ(CG)、フィードフォワードを近似推論手法として識別する別の解釈を提案する。
CG解釈は、確率的グラフィカルモデルのリッチな理論的枠組みの中で、各NNコンポーネントの性質を規定する。
我々は,CG解釈が様々なNN技術に対する新しい理論的支援と洞察を提供することを示す具体例を実例で示す。
論文 参考訳(メタデータ) (2020-06-30T14:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。