論文の概要: Generative Retrieval with Few-shot Indexing
- arxiv url: http://arxiv.org/abs/2408.02152v1
- Date: Sun, 4 Aug 2024 22:00:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:56:07.381435
- Title: Generative Retrieval with Few-shot Indexing
- Title(参考訳): Few-shot Indexing を用いた生成検索
- Authors: Arian Askari, Chuan Meng, Mohammad Aliannejadi, Zhaochun Ren, Evangelos Kanoulas, Suzan Verberne,
- Abstract要約: トレーニングベースの索引付けには3つの制限がある。高いトレーニングオーバーヘッド、大規模言語モデルのトレーニング済み知識の未使用、動的ドキュメントコーパスへの適応の課題である。
Few-Shot GR は訓練を必要とせず LLM の推進にのみ依存しており、より効率的である。
実験により、Few-Shot GRは、重い訓練を必要とする最先端のGR法よりも優れた性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 32.19543023080197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing generative retrieval (GR) approaches rely on training-based indexing, i.e., fine-tuning a model to memorise the associations between a query and the document identifier (docid) of a relevant document. Training-based indexing has three limitations: high training overhead, under-utilization of the pre-trained knowledge of large language models (LLMs), and challenges in adapting to a dynamic document corpus. To address the above issues, we propose a novel few-shot indexing-based GR framework (Few-Shot GR). It has a novel few-shot indexing process, where we prompt an LLM to generate docids for all documents in a corpus, ultimately creating a docid bank for the entire corpus. During retrieval, we feed a query to the same LLM and constrain it to generate a docid within the docid bank created during indexing, and then map the generated docid back to its corresponding document. Few-Shot GR relies solely on prompting an LLM without requiring any training, making it more efficient. Moreover, we devise few-shot indexing with one-to-many mapping to further enhance Few-Shot GR. Experiments show that Few-Shot GR achieves superior performance to state-of-the-art GR methods that require heavy training.
- Abstract(参考訳): 既存の生成検索(GR)アプローチは、トレーニングベースの索引付け、すなわち、クエリと関連するドキュメントのドキュメント識別子(ドシデント)との関係を記憶するモデルを微調整することに依存する。
トレーニングベースの索引付けには、高いトレーニングオーバーヘッド、大規模言語モデル(LLM)のトレーニング済み知識の未使用、動的ドキュメントコーパスへの適応に関する課題の3つの制限がある。
上記の問題に対処するため、我々は新規な数ショットインデックスに基づくGRフレームワーク(Few-Shot GR)を提案する。
LLMにコーパス内のすべてのドキュメントに対してドシドを生成し、最終的にコーパス全体のドシドバンクを生成するように促します。
検索中、同じLCMに問い合わせを送信し、インデックス作成時に生成されたドシドバンク内でドシドを生成し、生成されたドシドを対応するドキュメントにマッピングする。
Few-Shot GR は訓練を必要とせず LLM の推進にのみ依存しており、より効率的である。
さらに,Few-Shot GRをさらに強化するために,一対多マッピングによる少数ショットインデックス作成を提案する。
実験により、Few-Shot GRは、重い訓練を必要とする最先端のGR法よりも優れた性能を発揮することが示された。
関連論文リスト
- Graph-DPEP: Decomposed Plug and Ensemble Play for Few-Shot Document Relation Extraction with Graph-of-Thoughts Reasoning [34.85741925091139]
Graph-DPEPフレームワークは、自然言語で提示された三重項の説明思想の背景にある。
我々は,サブグラフに埋め込まれた推論的思考を活用することで,型リスト全体の「アンサンブルプレイ」生成を開発する。
論文 参考訳(メタデータ) (2024-11-05T07:12:36Z) - R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language model (LLMs) は、情報検索システムによって取得された関連コンテンツを利用して正しい応答を生成する。
既存のレトリバー・サプライヤ・メソッドは、テキスト生成タスクを実行するために LLM のプロンプトに関連文書を追加するのが一般的である。
検索拡張LDMのための文書順序付けを学習するための新しいパイプライン"Reinforced Retriever-Reorder-Responder"を提案する。
論文 参考訳(メタデータ) (2024-05-04T12:59:10Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
本稿では,PmptRepsを提案する。このPmptRepsは,トレーニングを必要とせず,コーパス全体から検索できる機能である。
検索システムは、高密度テキスト埋め込みとスパースバッグ・オブ・ワード表現の両方を利用する。
論文 参考訳(メタデータ) (2024-04-29T04:51:30Z) - CorpusLM: Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks [20.390672895839757]
Retrieval-augmented Generation (RAG) は、事実精度を高めるための一般的なソリューションとして登場した。
従来の検索モジュールは、大きなドキュメントインデックスと生成タスクとの切り離しに依存していることが多い。
生成検索,クローズドブック生成,RAGを統合した統一言語モデルである textbfCorpusLM を提案する。
論文 参考訳(メタデータ) (2024-02-02T06:44:22Z) - MILL: Mutual Verification with Large Language Models for Zero-Shot Query Expansion [39.24969189479343]
本稿では,大規模言語モデル(LLM)を相互検証に用いるゼロショットクエリ拡張フレームワークを提案する。
提案手法は完全にゼロショットであり,その有効性を示すために3つの公開ベンチマークデータセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2023-10-29T16:04:10Z) - How to Index Item IDs for Recommendation Foundation Models [49.425959632372425]
Recommendation foundation modelは、リコメンデーションタスクを自然言語タスクに変換することで、リコメンデーションのために大きな言語モデル(LLM)を利用する。
過剰に長いテキストや幻覚的なレコメンデーションを生成するのを避けるために、LCM互換のアイテムIDを作成することが不可欠である。
本稿では,シーケンシャルインデックス,協調インデックス,セマンティックインデックス(コンテンツベース)インデックス,ハイブリッドインデックスの4つを提案する。
論文 参考訳(メタデータ) (2023-05-11T05:02:37Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z) - Query2doc: Query Expansion with Large Language Models [69.9707552694766]
提案手法はまず,大言語モデル (LLM) をプロンプトすることで擬似文書を生成する。
query2docは、アドホックIRデータセットでBM25のパフォーマンスを3%から15%向上させる。
また,本手法は,ドメイン内およびドメイン外の両方において,最先端の高密度検索に有効である。
論文 参考訳(メタデータ) (2023-03-14T07:27:30Z) - DSI++: Updating Transformer Memory with New Documents [95.70264288158766]
DSI++は、DSIが新たなドキュメントをインクリメンタルにインデクシングするための継続的な学習課題である。
新たな文書の連続的な索引付けは,それまでの索引付け文書をかなり忘れてしまうことを示す。
文書の擬似クエリをサンプルとして生成メモリを導入し、連続的なインデックス付け中に補足することで、検索タスクの忘れを防止する。
論文 参考訳(メタデータ) (2022-12-19T18:59:34Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。