論文の概要: Graph-DPEP: Decomposed Plug and Ensemble Play for Few-Shot Document Relation Extraction with Graph-of-Thoughts Reasoning
- arxiv url: http://arxiv.org/abs/2411.02864v1
- Date: Tue, 05 Nov 2024 07:12:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:08.549709
- Title: Graph-DPEP: Decomposed Plug and Ensemble Play for Few-Shot Document Relation Extraction with Graph-of-Thoughts Reasoning
- Title(参考訳): Graph-DPEP:Graph-of-Thoughts推論によるFew-Shot文書関係抽出のための分解プラグとアンサンブルプレイ
- Authors: Tao Zhang, Ning Yan, Masood Mortazavi, Hoang H. Nguyen, Zhongfen Deng, Philip S. Yu,
- Abstract要約: Graph-DPEPフレームワークは、自然言語で提示された三重項の説明思想の背景にある。
我々は,サブグラフに埋め込まれた推論的思考を活用することで,型リスト全体の「アンサンブルプレイ」生成を開発する。
- 参考スコア(独自算出の注目度): 34.85741925091139
- License:
- Abstract: Large language models (LLMs) pre-trained on massive corpora have demonstrated impressive few-shot learning capability on many NLP tasks. Recasting an NLP task into a text-to-text generation task is a common practice so that generative LLMs can be prompted to resolve it. However, performing document-level relation extraction (DocRE) tasks with generative LLM models is still challenging due to the structured output format of DocRE, which complicates the conversion to plain text. Limited information available in few-shot samples and prompt instructions induce further difficulties and challenges in relation extraction for mentioned entities in a document. In this paper, we represent the structured output as a graph-style triplet rather than natural language expressions and leverage generative LLMs for the DocRE task. Our approach, the Graph-DPEP framework is grounded in the reasoning behind triplet explanation thoughts presented in natural language. In this framework, we first introduce a ``decomposed-plug" method for performing the generation from LLMs over prompts with type-space decomposition to alleviate the burden of distinguishing all relation types. Second, we employ a verifier for calibrating the generation and identifying overlooked query entity pairs. Third, we develop "ensemble-play", reapplying generation on the entire type list by leveraging the reasoning thoughts embedded in a sub-graph associated with the missing query pair to address the missingness issue. Through extensive comparisons with existing prompt techniques and alternative Language Models (LLMs), our framework demonstrates superior performance on publicly available benchmarks in experiments.
- Abstract(参考訳): 大規模コーパスで事前訓練された大規模言語モデル(LLM)は、多くのNLPタスクにおいて驚くべき数ショットの学習能力を示している。
NLPタスクをテキストからテキストへの生成タスクにリキャストすることは、ジェネレーティブなLLMを誘導してそれを解決するための一般的なプラクティスである。
しかし、文書レベルの関係抽出(DocRE)タスクを生成LLMモデルで実行することは、平文への変換を複雑化するDocREの構造的な出力フォーマットのため、依然として困難である。
少数のサンプルで利用可能な限定された情報と指示書は、文書内の言及されたエンティティの関連抽出においてさらなる困難と課題を引き起こす。
本稿では、構造化された出力を自然言語表現よりもグラフスタイルのトリプルトとして表現し、DocREタスクに生成LLMを活用する。
我々のアプローチであるGraph-DPEPフレームワークは、自然言語で提示された三重項の説明思想の背景にある。
本稿では、まず、全ての関係型を識別する負担を軽減するために、型空間分解によるプロンプトによる LLM の生成を行う ``decomposed-plug" 手法を導入する。次に、見過ごされたクエリエンティティペアの生成を校正し、見過ごされるクエリエンティティペアを識別するための検証器を用いて、欠落したクエリペアに関連するサブグラフに埋め込まれた思考を活用して、型リスト全体の生成を「アンサンブルプレイ」再適用する。
既存のプロンプト技術と代替言語モデル(LLM)との広範な比較を通じて、実験で利用可能なベンチマークにおいて、我々のフレームワークは優れた性能を示す。
関連論文リスト
- Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
本研究では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
2億2千万のパラメータからなる基本生成部分グラフ検索モデルでは,最先端モデルと比較して競合検索性能が向上した。
LLMリーダを接続した最大の3Bモデルは、WebQSPとCWQベンチマークの両方で、SOTAのエンドツーエンドパフォーマンスを新たに設定します。
論文 参考訳(メタデータ) (2024-10-08T15:22:36Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - XPrompt:Explaining Large Language Model's Generation via Joint Prompt Attribution [26.639271355209104]
LLM(Large Language Models)は複雑なテキスト生成タスクにおいて顕著なパフォーマンスを示す。
生成したコンテンツに対する入力プロンプトの寄与は、まだ人間には明らかでない。
本稿では,共同プロンプト帰属型XPromptに基づく実例説明フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-30T18:16:41Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
大規模言語モデル(LLM)の隠れ状態表現を利用した文脈質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
本稿では,LLM世代に対するトークンレベルのアノテーションを文脈質問応答設定に有する属性データセットであるVerifiability-granularを提案する。
論文 参考訳(メタデータ) (2024-05-28T09:12:44Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
本稿では,新しい教師なしテキスト埋め込み手法であるMeta-Task Prompting with Explicit One-Word Limitationを紹介する。
モデル微調整を必要とせずに,大規模言語モデルから高品質な文埋め込みを生成する。
提案法は,多種多様なシナリオにまたがって生成を組み込む汎用的で資源効率のよい手法を提供する。
論文 参考訳(メタデータ) (2024-02-28T16:35:52Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - Semi-automatic Data Enhancement for Document-Level Relation Extraction
with Distant Supervision from Large Language Models [26.523153535336725]
ドキュメントレベルの関係抽出(DocRE)は、長いコンテキストから関係を抽出することを目的としている。
本稿では,大規模言語モデル (LLM) と自然言語推論 (NLI) モジュールを統合する手法を提案する。
DocGNREと呼ばれる拡張データセットを導入することで,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-11-13T13:10:44Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
リレーショナル抽出(RE)は、ゼロショット設定下であっても、一定のラベル付きまたはラベルなしのデータを一貫して含む。
近年の研究では、大きな言語モデル(LLM)が、単に自然言語のプロンプトを与えられただけで、新しいタスクにうまく移行していることが示されている。
本研究はゼロショット関係抽出器としてLLMを探索することに焦点を当てる。
論文 参考訳(メタデータ) (2023-10-08T06:17:39Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z) - Recitation-Augmented Language Models [85.30591349383849]
知識集約型NLPタスクにおいて,RECITEは強力なパラダイムであることを示す。
具体的には、リサイクリングを中間ステップとして活用することにより、新しい最先端性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-10-04T00:49:20Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
ハードコントラストテキスト生成のための新しい挿入ベースアプローチであるPOINTERを提案する。
提案手法は,既存のトークン間で段階的に新しいトークンを並列に挿入することによって動作する。
結果として生じる粗大な階層構造は、生成プロセスを直感的で解釈可能である。
論文 参考訳(メタデータ) (2020-05-01T18:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。