AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines
- URL: http://arxiv.org/abs/2408.02181v2
- Date: Wed, 16 Oct 2024 15:53:15 GMT
- Title: AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines
- Authors: Renjith Prasad, Chathurangi Shyalika, Ramtin Zand, Fadi El Kalach, Revathy Venkataramanan, Ramy Harik, Amit Sheth,
- Abstract summary: Anomaly detection in manufacturing pipelines remains a critical challenge, intensified by the complexity and variability of industrial environments.
This paper introduces AssemAI, an interpretable image-based anomaly detection system tailored for smart manufacturing pipelines.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection in manufacturing pipelines remains a critical challenge, intensified by the complexity and variability of industrial environments. This paper introduces AssemAI, an interpretable image-based anomaly detection system tailored for smart manufacturing pipelines. Utilizing a curated image dataset from an industry-focused rocket assembly pipeline, we address the challenge of imbalanced image data and demonstrate the importance of image-based methods in anomaly detection. Our primary contributions include deriving an image dataset, fine-tuning an object detection model YOLO-FF, and implementing a custom anomaly detection model for assembly pipelines. The proposed approach leverages domain knowledge in data preparation, model development and reasoning. We implement several anomaly detection models on the derived image dataset, including a Convolutional Neural Network, Vision Transformer (ViT), and pre-trained versions of these models. Additionally, we incorporate explainability techniques at both user and model levels, utilizing ontology for user-level explanations and SCORE-CAM for in-depth feature and model analysis. Finally, the best-performing anomaly detection model and YOLO-FF are deployed in a real-time setting. Our results include ablation studies on the baselines and a comprehensive evaluation of the proposed system. This work highlights the broader impact of advanced image-based anomaly detection in enhancing the reliability and efficiency of smart manufacturing processes. The image dataset, codes to reproduce the results and additional experiments are available at https://github.com/renjithk4/AssemAI.
Related papers
- Sparse Modelling for Feature Learning in High Dimensional Data [0.0]
This paper presents an innovative approach to dimensionality reduction and feature extraction in high-dimensional datasets.
The proposed framework integrates sparse modeling techniques into a comprehensive pipeline for efficient and interpretable feature selection.
We aim to advance the understanding and application of sparse modeling in machine learning, particularly in the context of wood surface defect detection.
arXiv Detail & Related papers (2024-09-28T14:17:59Z) - Bring the Power of Diffusion Model to Defect Detection [0.0]
diffusion probabilistic model (DDPM) is pre-trained to extract the features of denoising process to construct as a feature repository.
The queried latent features are reconstructed and filtered to obtain high-dimensional DDPM features.
Experiment results demonstrate that our method achieves competitive results on several industrial datasets.
arXiv Detail & Related papers (2024-08-25T14:28:49Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System [7.1083241462091165]
We introduce an external modality-guided data mining framework, primarily rooted in optical character recognition (OCR), to extract statistical features from images.
A key aspect of our approach is the alignment of external modality features, extracted using a single modality-aware model, with image features encoded by a convolutional neural network.
Our methodology considerably boosts the recall rate of the defect detection model and maintains high robustness even in challenging scenarios.
arXiv Detail & Related papers (2024-03-18T07:41:39Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Anomaly localization by modeling perceptual features [3.04585143845864]
Feature-Augmented VAE is trained by reconstructing the input image in pixel space, and also in several different feature spaces.
It achieves clear improvement over state-of-the-art methods on the MVTec anomaly detection and localization datasets.
arXiv Detail & Related papers (2020-08-12T15:09:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.