Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
- URL: http://arxiv.org/abs/2408.02295v2
- Date: Wed, 2 Oct 2024 05:46:06 GMT
- Title: Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
- Authors: Seyeon Kim, Joonhun Lee, Namhoon Cho, Sungjun Han, Wooseop Hwang,
- Abstract summary: We introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning.
Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis.
- Score: 0.19418036471925312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional uncertainty-aware temporal difference (TD) learning methods often rely on simplistic assumptions, typically including a zero-mean Gaussian distribution for TD errors. Such oversimplification can lead to inaccurate error representations and compromised uncertainty estimation. In this paper, we introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning, applicable to both discrete and continuous control settings. Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis, thereby improving the estimation and mitigation of data-dependent noise, i.e., aleatoric uncertainty. We examine the influence of the shape parameter of the generalized Gaussian distribution (GGD) on aleatoric uncertainty and provide a closed-form expression that demonstrates an inverse relationship between uncertainty and the shape parameter. Additionally, we propose a theoretically grounded weighting scheme to fully leverage the GGD. To address epistemic uncertainty, we enhance the batch inverse variance weighting by incorporating bias reduction and kurtosis considerations, resulting in improved robustness. Extensive experimental evaluations using policy gradient algorithms demonstrate the consistent efficacy of our method, showcasing significant performance improvements.
Related papers
- Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials [0.0]
Uncertainty estimations for machine learning interatomic potentials (MLIPs) are crucial for quantifying model error.
We evaluate uncertainty estimations of GPR-based MLIPs, including the predictive GPR standard deviation and ensemble-based uncertainties.
arXiv Detail & Related papers (2024-10-27T10:06:09Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
We focus on characterizing the variance over values induced by a distribution over MDPs.
Previous work upper bounds the posterior variance over values by solving a so-called uncertainty Bellman equation.
We propose a new uncertainty Bellman equation whose solution converges to the true posterior variance over values.
arXiv Detail & Related papers (2023-02-24T09:18:27Z) - Leveraging Heteroscedastic Uncertainty in Learning Complex Spectral
Mapping for Single-channel Speech Enhancement [20.823177372464414]
Most speech enhancement (SE) models learn a point estimate, and do not make use of uncertainty estimation in the learning process.
We show that modeling heteroscedastic uncertainty by minimizing a multivariate Gaussian negative log-likelihood (NLL) improves SE performance at no extra cost.
arXiv Detail & Related papers (2022-11-16T02:29:05Z) - On Calibrated Model Uncertainty in Deep Learning [0.0]
We extend the approximate inference for the loss-calibrated Bayesian framework to dropweights based Bayesian neural networks.
We show that decisions informed by loss-calibrated uncertainty can improve diagnostic performance to a greater extent than straightforward alternatives.
arXiv Detail & Related papers (2022-06-15T20:16:32Z) - On Uncertainty, Tempering, and Data Augmentation in Bayesian
Classification [47.13680267076843]
We show that explicitly accounting for aleatoric uncertainty significantly improves the performance of Bayesian neural networks.
We find that a cold posterior, tempered by a power greater than one, often more honestly reflects our beliefs about aleatoric uncertainty than no tempering.
arXiv Detail & Related papers (2022-03-30T17:17:50Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
We show how the concept of Errors-in-Variables can be used in Bayesian deep regression.
We discuss the approach along various simulated and real examples.
arXiv Detail & Related papers (2021-05-19T12:37:02Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.