Mitigating Covariate Shift in Misspecified Regression with Applications
to Reinforcement Learning
- URL: http://arxiv.org/abs/2401.12216v1
- Date: Mon, 22 Jan 2024 18:59:12 GMT
- Title: Mitigating Covariate Shift in Misspecified Regression with Applications
to Reinforcement Learning
- Authors: Philip Amortila, Tongyi Cao, Akshay Krishnamurthy
- Abstract summary: We study the effect of distribution shift in the presence of model misspecification.
We show that empirical risk minimization, or standard least squares regression, can result in undesirable misspecification amplification.
We develop a new algorithm that avoids this undesirable behavior, resulting in no misspecification amplification while still obtaining optimal statistical rates.
- Score: 39.02112341007981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A pervasive phenomenon in machine learning applications is distribution
shift, where training and deployment conditions for a machine learning model
differ. As distribution shift typically results in a degradation in
performance, much attention has been devoted to algorithmic interventions that
mitigate these detrimental effects. In this paper, we study the effect of
distribution shift in the presence of model misspecification, specifically
focusing on $L_{\infty}$-misspecified regression and adversarial covariate
shift, where the regression target remains fixed while the covariate
distribution changes arbitrarily. We show that empirical risk minimization, or
standard least squares regression, can result in undesirable misspecification
amplification where the error due to misspecification is amplified by the
density ratio between the training and testing distributions. As our main
result, we develop a new algorithm -- inspired by robust optimization
techniques -- that avoids this undesirable behavior, resulting in no
misspecification amplification while still obtaining optimal statistical rates.
As applications, we use this regression procedure to obtain new guarantees in
offline and online reinforcement learning with misspecification and establish
new separations between previously studied structural conditions and notions of
coverage.
Related papers
- Regularization for Adversarial Robust Learning [18.46110328123008]
We develop a novel approach to adversarial training that integrates $phi$-divergence regularization into the distributionally robust risk function.
This regularization brings a notable improvement in computation compared with the original formulation.
We validate our proposed method in supervised learning, reinforcement learning, and contextual learning and showcase its state-of-the-art performance against various adversarial attacks.
arXiv Detail & Related papers (2024-08-19T03:15:41Z) - Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning [0.19418036471925312]
We introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning.
Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis.
arXiv Detail & Related papers (2024-08-05T08:12:25Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
We argue that devising simpler methods for learning predictors on existing features is a promising direction for future research.
We introduce Domain-Adjusted Regression (DARE), a convex objective for learning a linear predictor that is provably robust under a new model of distribution shift.
Under a natural model, we prove that the DARE solution is the minimax-optimal predictor for a constrained set of test distributions.
arXiv Detail & Related papers (2022-02-14T16:42:16Z) - Covariate Shift in High-Dimensional Random Feature Regression [44.13449065077103]
Covariate shift is a significant obstacle in the development of robust machine learning models.
We present a theoretical understanding in context of modern machine learning.
arXiv Detail & Related papers (2021-11-16T05:23:28Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.